ID 07.1

Specific killing of BRCA1-deficient cancer cells by depletion of EXO1

B. van de Kooij^{1,*}, A. Schreuder^{1, 2},*, R.S. Pavani^{3,*}, V. Garzero^{1, 2}, A. van Hoeck^{2, 4}, M. San Martin Alonso^{1, 2}, D. Koerse¹, J. Boom⁵, H. Mei⁵, E.P.J.G. Cuppen^{2, 4, 6}, A. Nussenzweig³, H. van Attikum^{1,#}, S.M. Noordermeer^{1, 2,#}

¹Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands ²Oncode Institute, Utrecht, the Netherlands ³Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA ⁴Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands ⁵Sequencing Analysis Support Core, Leiden University Medical Center, the Netherlands ⁶Hartwig Medical Foundation, Amsterdam, the Netherlands * These authors contributed equally # Co-corresponding authors: h.van.attikum@lumc.nl and s.m.noordermeer@lumc.nl

BRCA1 and BRCA2 are essential genome maintenance factors that function in the repair of DNA Double-Strand Breaks (DSBs) by homologous recombination (HR). Cancer patients that carry tumors with loss-of-function mutations in BRCA1 or BRCA2 often benefit from treatment with PARP inhibitor therapy, which specifically kills HR-deficient tumor cells. However, clinical responses are rarely long-lasting due to resistance to PARP inhibitor treatment. We therefore sought to identify novel therapeutic opportunities to treat HR-deficient tumors. Our studies revealed that genetic inactivation of the exonuclease EXO1 is severely toxic to BRCA1-deficient cells, but not to BRCA1-proficient cells. Mechanistically, our data suggest show that loss of EXO1 results in DSB formation, potentially due to a defect in the maturation of Okazaki fragments. BRCA1/EXO1 double-deficient cells are severely compromised in their capacity to repair these DSBs, resulting in genomic instability and cell death. Taken together, we have uncovered EXO1 as a novel synthetic lethal target with therapeutic potential to treat patients carrying BRCA1-deficient tumors.