Uso de la metabolómica ecológica como herramienta complementaria para el estudio de la salud integral de los ecosistemas
PDF

Palabras clave

salud integral de los ecosistemas
vulnerabilidad
metabolómica ecológica

Cómo citar

Lara-Del Río, A. de J., Flores-Ramírez, R., Díaz-Barriga, F., García-Chávez, E., & Espinosa Reyes, G. (2020). Uso de la metabolómica ecológica como herramienta complementaria para el estudio de la salud integral de los ecosistemas. Revista De Salud Ambiental, 20(1), 3–13. Recuperado a partir de https://ojs.diffundit.com/index.php/rsa/article/view/1011

Resumen

Los ecosistemas del planeta presentan síntomas que nos advierten claramente que los procesos de resiliencia ya no son tan eficientes; están en declive, como consecuencia de diversas actividades humanas que alteran sus componentes físicos, químicos, biológicos y sus interrelaciones. Por lo tanto, este rápido deterioro requiere de una monitorización ambiental más adecuada, intensificando la necesidad de indicadores que sean más operativos. Una de las limitantes que se presenta al momento de monitorear un ecosistema es que no se cuenta con herramientas que evidencien y detecten tempranamente cambios potencialmente dañinos en las capacidades funcionales del mismo. Sin embargo, el enfoque holístico de las llamadas ciencias ómicas (genómica, transcriptómica, metabolómica), en especial metabólomica, podría ser una importante herramienta que permita generar datos para acceder a la metacognición del concepto de vulnerabilidad ecológica y su importancia al momento de monitorear un ecosistema. La base de la metabolómica es el monitoreo de la variabilidad fenotípica en respuesta a los cambios ambientales (interacciones bióticas y abióticas), proporcionando un mejor análisis de las diferentes capacidades de respuesta conferidas por la plasticidad fenotípica de cada especie, permitiendo así, determinar el metabolismo que está involucrado en esta plasticidad. Las respuestas metabólicas de las especies son determinantes al momento de monitorear un ecosistema. Esta aproximación tiene un gran potencial para establecer no solo datos individuales de un organismo, sino redes de datos del comportamiento metabólico de poblaciones, o ecosistemas de manera espacial y temporal convirtiéndola en una herramienta muy interesante para monitorear un ecosistema.
PDF

Citas

Global Biodiversity. [citado 16/05/2019] Disponible en: https://www.cbd.int/gbo3/?pub=6667&section=6705.

What is Ecosystem Health?. [citado 16/05/2019] Disponible en: https://www.seadocsociety.org/what-is-ecosystem-health.

Ippolito A, Sala S, Faber JH, Vighi M. Ecological vulnerability analysis: A river basin case study. Sci Total Environ. 2010; 408(18):3880–90.

Weißhuhn P, Müller F, Wiggering H. Ecosystem Vulnerability Review: Proposal of an Interdisciplinary Ecosystem Assessment Approach. Environ Manage. 2018; 61(6):904–15.

Burkhard B, Müller F, Lill A. Ecosystem Health Indicators. En: Ecological Indicators, vol [2] of Encyclopedia of Ecology, 5 vols. 2008. p. 1132–8.

Bundy, J.G., Davey, M.P. & Viant, M.R. Environmental metabolomics: a critical review and future perspectives. Metabolomics, 2009; 5(1):3

Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics 2001; 2(3):155–68.

Sardans J, Peñuelas J, Rivas-Ubach A. Ecological metabolomics: overview of current developments and future challenges. Chemoecology, 2011; 21(4):191–225.

European Bioinformatics Institute. What is metabolomics?. [citado 22/01/2019] Disponible en: https://www.ebi.ac.uk/ training/online/course/introduction-metabolomics/what- metabolomics.

Metabolismo Celular. [citado 16/012019]. Disponible en: http://www.objetos.unam.mx/biologia/metabolismoCelular/ index.html.

Portal Académico del CCH. [citado 16/012019] Disponible en: https://portalacademico.cch.unam.mx/alumno/biologia1/ unidad2/metabolismo/definicion.

Arbona Mengual V, López Climent MF, Pérez Clemente RM, Gómez Cadenas A. La metabolómica como herramienta para la evaluación fisiológica y nutricional en citricultura. Revista Internacional de cítricos, 2014; 2(1)104-8.

Barbas Coral RD. La ventana de la metabolómica, vislumbrando el panorama de sus aplicaciones. La metabolómica, 2015; 186:11.

Sardans, Jordi RU Albert, Peñuelas, Josep. Ecometabolómica | Investigación y Ciencia | Investigación y Ciencia. [citado 19/032019] Disponible en: https://www.investigacionyciencia. es/revistas/investigacion-y-ciencia/el-origen-de-la- multicelularidad-568/ecometabolmica-10804.

Metabolomics: Understanding Metabolism in the 21st Century - MOOC. [citado 19/03/2019] Disponible en: https:// www.birmingham.ac.uk/postgraduate/courses/moocs/ metabolomics.aspx.

Eggen RIL, Behra R, Burkhardt-Holm P, Escher BI, Schweigert N. Challenges in ecotoxicology. Environ Sci Technol. 2004; 38(3):58A-64A.

Poulin RX, Pohnert G. Simplifying the complex: metabolomics approaches in chemical ecology. Anal Bioanal Chem. 2019; 411(1):13–9.

Matich EK, Chavez Soria NG, Aga DS, Atilla-Gokcumen GE. Applications of metabolomics in assessing ecological effects of emerging contaminants and pollutants on plants. J Hazard Mater. 2019 ;373:527–35.

Simmons DBD, Benskin JP, Cosgrove JR, Duncker BP, Ekman DR, Martyniuk CJ, et al. Omics for aquatic ecotoxicology: Control of extraneous variability to enhance the analysis of environmental effects. Environ Toxicol Chem. 2015; 34(8):1693–704.

Methodologies and applications in the environmental sciences. [citado 19/03/2019] Disponible en: https://www.jstage.jst.go.jp/ article/jpestics/31/3/31_3_245/_article.

Bedia C, Cardoso P, Dalmau N, Garreta-Lara E, Gómez-Canela C, Gorrochategui E, et al. Data Analysis for Omic Sciences: Methods and Applications. 2018; 82:533–82.

Viant MR, Werner I, Rosenblum ES, Gantner AS, Tjeerdema RS, Johnson ML. Correlation between heat-shock protein induction and reduced metabolic condition in juvenile steelhead trout (Oncorhynchus mykiss) chronically exposed to elevated temperature. Fish Physiol Biochem. 2003; 29(2):159–71.

Cao M, Wang D, Mao Y, Kong F, Bi G, Xing Q, et al. Integrating transcriptomics and metabolomics to characterize the regulation of EPA biosynthesis in response to cold stress in seaweed Bangia fuscopurpurea. PLOS ONE, 2017; 12(12):e0186986.

Gandar A, Laffaille P, Canlet C, Tremblay-Franco M, Gautier R, Perrault A, et al. Adaptive response under multiple stress exposure in fish: From the molecular to individual level. Chemosphere. 2017; 188:60–72.

Serra-Compte A, Álvarez-Muñoz D, Solé M, Cáceres N, Barceló D, Rodríguez-Mozaz S. Comprehensive study of sulfamethoxazole effects in marine mussels: Bioconcentration, enzymatic activities and metabolomics. Environ Res, 2019; 173:12–22.

Viant MR. Improved methods for the acquisition and 41. interpretation of NMR metabolomic data. Biochem Biophys Res Commun. 2003; 310(3):943–8.

Zhang W, Tan NGJ, Fu B, Li SFY. Metallomics and NMR-based metabolomics of Chlorella sp. reveal the synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress. Met Integr Biometal Sci. 2015; 7(3):426–38.

Bonnefille B, Gomez E, Alali M, Rosain D, Fenet H, Courant F. Metabolomics assessment of the effects of diclofenac exposure on Mytilus galloprovincialis: Potential effects on osmoregulation and reproduction. Sci Total Environ. 2018; 613–614:611–8.

Maisano M, Cappello T, Natalotto A, Vitale V, Parrino V, Giannetto A, et al. Effects of petrochemical contamination on caged marine mussels using a multi-biomarker approach: Histological changes, neurotoxicity and hypoxic stress. Mar Environ Res. 2017; 128:114–23.

Thouvenot L, Deleu C, Berardocco S, Haury J, Thiébaut G. Characterization of the salt stress vulnerability of three invasive freshwater plant species using a metabolic profiling approach. J Plant Physiol. 2015; 175:113–21.

Holzinger A, Karsten U. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. Front Plant Sci. 2013; 4:327.

Chou L, Kenig F, Murray AE, Fritsen CH, Doran PT. Effects of legacy metabolites from previous ecosystems on the environmental metabolomics of the brine of Lake Vida, East Antarctica. Org Geochem. 2018; 122:161–70.

Riedl J, Kluender C, Sans-Piché F, Heilmeier H, Altenburger R, Schmitt-Jansen M. Spatial and temporal variation in metabolic fingerprints of field-growing Myriophyllum spicatum. Aquat Bot. 2012; 102:34–43.

Hou J, Wang L, Wang C, Zhang S, Liu H, Li S, et al. Toxicity and mechanisms of action of titanium dioxide nanoparticles in

living organisms. J Environ Sci. 2019; 75:40–53.

Revel M, Châtel A, Mouneyrac C. Omics tools: New challenges in aquatic nanotoxicology? Aquat Toxicol Amst Neth. 2017; 193:72–85.

Teng M, Zhu W, Wang D, Qi S, Wang Y, Yan J, et al. Metabolomics and transcriptomics reveal the toxicity of difenoconazole to the early life stages of zebrafish (Danio rerio). Aquat Toxicol 2018; 194:112–20.

Barboza LGA, Vieira LR, Branco V, Figueiredo N, Carvalho F, Carvalho C, et al. Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquat Toxicol. 2018; 195:49–57.

Arukwe A, Myburgh J, Langberg HA, Adeogun AO, Braa IG, Moeder M, et al. Developmental alterations and endocrine- disruptive responses in farmed Nile crocodiles (Crocodylus niloticus) exposed to contaminants from the Crocodile River, South Africa. Aquat Toxicol. 2016; ;173:83-93.

Ortiz-Villanueva E, Jaumot J, Martínez R, Navarro-Martín L, Piña B, Tauler R. Assessment of endocrine disruptors effects on zebrafish (Danio rerio) embryos by untargeted LC-HRMS metabolomic analysis. Sci Total Environ. 2018; 635:156–66.

Collins JP. Amphibian decline and extinction: what we know and what we need to learn. Dis Aquat Organ. 2010; 92(2–3):93–9.

Gibbons JW, Scott DE, Ryan TJ, Buhlmann KA, Tuberville TD, Metts BS, et al. The Global Decline of Reptiles, Déjà Vu AmphibiansReptile species are declining on a global scale. Six significant threats to reptile populations are habitat loss and degradation, introduced invasive species, environmental pollution, disease, unsustainable use, and global climate change. BioScience. 2000; 50(8):653–66.

Whitfield SM, Bell KE, Philippi T, Sasa M, Bolaños F, Chaves G, et al. Amphibian and reptile declines over 35 years at La Selva, Costa Rica. Proc Natl Acad Sci. 2007; 104(20):8352–6.

Brühl CA, Schmidt T, Pieper S, Alscher A. Terrestrial pesticide exposure of amphibians: An underestimated cause of global decline? Sci Rep. 2013; 3:1135.

Hayes TB, Case P, Chui S, Chung D, Haeffele C, Haston K, et al. Pesticide Mixtures, Endocrine Disruption, and Amphibian Declines: Are We Underestimating the Impact?. Environ Health. 2006; 114(Suppl 1):40–50.

Rajaguru P, Kalpana R, Hema A, Suba S, Baskarasethupathi B, Kumar PA, et al. Genotoxicity of some sulfur dyes on tadpoles (Rana hexadactyla) measured using the comet assay. Environ Mol Mutagen. 2001; 38(4):316–22.

Ralph S, Petras M, Pandrangi R, Vrzoc M. Alkaline single-cell gel (comet) assay and genotoxicity monitoring using two species of tadpoles. Environ Mol Mutagen. 1996; 28(2):112–20.

Denton RD, Bernot MJ. Effects of Multiple Agricultural Chemicals on Northern Leopard Frog, Lithobates Pipiens, Larvae. Proc Indiana Acad Sci. 2011; 120(1/2):39–44.

Attademo AM, Peltzer PM, Lajmanovich RC, Basso A, Junges C. Tissue-Specific Variations of Esterase Activities in the Tadpoles and Adults of Pseudis paradoxa (Anura: Hylidae). Water Air. 2014; 225(3):1903.

Cusaac JPW, Mimbs WH, Belden JB, Smith LM, McMurry ST. Terrestrial exposure and effects of Headline AMP® Fungicide on amphibians. Ecotoxicology. 2015; 24(6):1341–51.

Denoël M, D’Hooghe B, Ficetola GF, Brasseur C, De Pauw E, Thomé J-P, et al. Using sets of behavioral biomarkers to assess short-term effects of pesticide: a study case with endosulfan on frog tadpoles. Ecotoxicology. 2012; 21(4):1240–50.

Quaranta A, Bellantuono V, Cassano G, Lippe C. Why Amphibians Are More Sensitive than Mammals to Xenobiotics. PLOS ONE. 2009; 4(11):e7699.

Carlsson G, Tydén E. Development and evaluation of gene expression biomarkers for chemical pollution in common frog (Rana temporaria) tadpoles. Environ Sci Pollut Res Int. 2018; 25(33):33131–9.

do Amaral DF, Montalvão MF, de Oliveira Mendes B, da Costa Araújo AP, de Lima Rodrigues AS, Malafaia G. Sub-lethal effects induced by a mixture of different pharmaceutical drugs in predicted environmentally relevant concentrations on Lithobates catesbeianus (Shaw, 1802) (Anura, ranidae) tadpoles. Environ Sci Pollut Res Int. 2019; 26(1):600–16.

do Amaral DF, Montalvão MF, de Oliveira Mendes B, da Silva Castro AL, Malafaia G. Behavioral and mutagenic biomarkers in tadpoles exposed to different abamectin concentrations. Environ Sci Pollut Res Int. 2018; 25(13):12932–46.

Jones-Costa M, Franco-Belussi L, Vidal FAP, Gongora NP, Castanho LM, Dos Santos Carvalho C, et al. Cardiac biomarkers as sensitive tools to evaluate the impact of xenobiotics on amphibians: the effects of anionic surfactant linear alkylbenzene sulfonate (LAS). Ecotoxicol Environ Saf. 2018; 151:184–90.

Lambert MR, Skelly DK, Ezaz T. Sex-linked markers in the North American green frog (Rana clamitans) developed using DArTseq provide early insight into sex chromosome evolution. BMC Genomics. 2016; 17(1):844.

Snyder MN, Henderson WM, Glinski DA, Purucker ST. Biomarker analysis of American toad (Anaxyrus americanus) and grey tree frog (Hyla versicolor) tadpoles following exposure to atrazine. Aquat Toxicol Amst Neth. 2017; 182:184–93.

Ichu T-A, Han J, Borchers CH, Lesperance M, Helbing CC. Metabolomic insights into system-wide coordination of vertebrate metamorphosis. BMC Dev Biol. 2014; 14:5.

Luehr TC, Koide EM, Wang X, Han J, Borchers CH, Helbing CC. Metabolomic insights into the effects of thyroid hormone on Rana [Lithobates] catesbeiana metamorphosis using whole- body Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging (MALDI-MSI). Gen Comp Endocrinol. 2018; 265:237–45.

Van Meter RJ, Glinski DA, Purucker ST, Henderson WM. Influence of exposure to pesticide mixtures on the metabolomic profile in post-metamorphic green frogs (Lithobates clamitans). Sci Total Environ. mayo de 2018; 624:1348–59.

Cavalcante ID, Antoniazzi MM, Jared C, Pires OR, Sciani JM, Pimenta DC. Venomics analyses of the skin secretion of Dermatonotus muelleri: Preliminary proteomic and metabolomic profiling. Toxicon. 2017; 130:127–35.

Duellman WE, Trueb L. Biology of Amphibians. Edición: New Ed. Baltimore: Johns Hopkins University Press; 1994. 696 p.

Rodríguez C, Rollins-Smith L, Ibáñez R, Durant-Archibold AA, Gutiérrez M. Toxins and pharmacologically active compounds from species of the family Bufonidae (Amphibia, Anura). J Ethnopharmacol. 2017; 198:235–54.

Ziarrusta H, Mijangos L, Picart-Armada S, Irazola M, Perera- Lluna A, Usobiaga A, et al. Non-targeted metabolomics reveals alterations in liver and plasma of gilt-head bream exposed to oxybenzone. Chemosphere. 2018; 211:624–31.

Liu X, Liu C, Wang P, Liang Y, Zhan J, Zhou Z, et al. Distribution, metabolism and metabolic disturbances of alpha-cypermethrin in embryo development, chick growth and adult hens. Environ Pollut Barking Essex 1987. 2019; 249:390–7.

Alijagic A, Gaglio D, Napodano E, Russo R, Costa C, Benada O, et al. Titanium dioxide nanoparticles temporarily influence the sea urchin immunological state suppressing inflammatory- relate gene transcription and boosting antioxidant metabolic activity. J Hazard Mater. 2020; 384.

Shi C, Han X, Mao X, Fan C, Jin M. Metabolic profiling of liver tissues in mice after instillation of fine particulate matter. Sci Total Environ. 2019; 696.

Bundy JG, Sidhu JK, Rana F, Spurgeon DJ, Svendsen C, Wren JF, et al. “Systems toxicology” approach identifies coordinated metabolic responses to copper in a terrestrial non-model invertebrate, the earthworm Lumbricus rubellus. BMC Biol. 2008; 6(1):25.

Watanabe M, Roth TL, Bauer SJ, Lane A, Romick-Rosendale LE. Feasibility Study of NMR Based Serum Metabolomic Profiling to Animal Health Monitoring: A Case Study on Iron Storage Disease in Captive Sumatran Rhinoceros (Dicerorhinus sumatrensis). PLOS ONE. 2016; 11(5):e0156318.

Broadrup RL, Mayack C, Schick SJ, Eppley EJ, White HK, Macherone A. Honey bee (Apis mellifera) exposomes and dysregulated metabolic pathways associated with Nosema ceranae infection. PLoS ONE. 2019; 14(3):1–18.

Cordier S, Bonvallot N, Canlet C, Blas-Y-Estrada F, Gautier R, Tremblay-Franco M, et al. Metabolome disruption of pregnant rats and their offspring resulting from repeated exposure to a pesticide mixture representative of environmental contamination in Brittany. PLoS ONE. 2018; 13(6):1–21.

Li M-H, Ruan L-Y, Zhou J-W, Fu Y-H, Jiang L, Zhao H, et al. Metabolic profiling of goldfish (Carassius auratis) after long- term glyphosate-based herbicide exposure. Aquat Toxicol Amst Neth. 2017; 188:159–69.

Dani VD, Simpson AJ, Simpson MJ. Analysis of earthworm sublethal toxic responses to atrazine exposure using 1 H nuclear magnetic resonance (NMR)-based metabolomics. Environ Toxicol Chem. 2018; 37(2):473–80.

Ralston-Hooper K, Hopf A, Oh C, Zhang X, Adamec J, Sepúlveda MS. Development of GCxGC/TOF-MS metabolomics for use in ecotoxicological studies with invertebrates. Aquat Toxicol Amst Neth. el 2 de junio de 2008;88(1):48–52.

Lukowicz C, Ellero-Simatos S, Régnier M, Polizzi A, Lasserre F, Montagner A, et al. Metabolic Effects of a Chronic Dietary Exposure to a Low-Dose Pesticide Cocktail in Mice: Sexual Dimorphism and Role of the Constitutive Androstane Receptor. Environ Health Perspect. 2018; 126(6):067007.

Glinski DA, Purucker ST, Meter RJV, Black MC, Henderson WM. Endogenous and exogenous biomarker analysis in terrestrial phase amphibians (Lithobates sphenocephala) following dermal exposure to pesticide mixtures. Environ Chem. 2018; 16(1):55–67.

Yuk J, Simpson MJ, Simpson AJ. 1-D and 2-D NMR metabolomics of earthworm responses to sub-lethal trifluralin and endosulfan exposure. 2011; 8(3):281–94.

Vohsen SA, Fisher CR, Baums IB. Metabolomic richness and fingerprints of deep-sea coral species and populations. Metabolomics. 2019. 15; 34-38.

Vastag L, Jorgensen P, Peshkin L, Wei R, Rabinowitz JD, Kirschner MW .Remodeling of the Metabolome during Early Frog Development . 2011; 6(2): e16881.

Melvin SD, Leusch FDL, Carroll AR. Metabolite profiles of striped marsh frog (Limnodynastes peronii) larvae exposed to the anti-androgenic fungicides vinclozolin and propiconazole are consistent with altered steroidogenesis and oxidative stress. Aquat Toxicol Amst Neth. 2018; 199:232–9.

Las obras que se publican en esta revista están sujetas a los siguientes términos:

  1. La revista conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia indicada en el punto 2.
  2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que se cite la autoría, la url y la revista, y no se utilicen para fines comerciales.
  3. Los autores están de acuerdo con la licencia de uso utilizada por la revista, con las condiciones de auto-archivo y con la política de acceso abierto.
  4. En caso de reutilización de las obras publicadas debe mencionarse la existencia y especificaciones de la licencia de uso además de mencionar la autoría y fuente original de su publicación.

Descargas

Los datos de descargas todavía no están disponibles.