Resumen
En salud ambiental, la incidencia del consumo de plantas venenosas como factor de riesgo es un hecho bien establecido. La principal dificultad para afrontar esta casuística toxicológica deriva de la enorme diversidad vegetal, que requiere de una sistematización previa que facilite al personal técnico y sanitario su diagnosis. En el ámbito de Andalucía occidental, percibimos la carencia de una herramienta específicamente adaptada a la identificación de plantas silvestres potencialmente causantes de intoxicación, especialmente cuando sus partes tóxicas son subterráneas. En este trabajo hemos llevado a cabo una revisión de hierbas silvestres comunes, con órganos subterráneos especializados en la acumulación de reservas (bulbos, tubérculos, rizomas) de alta potencialidad toxicológica. Hemos seleccionado como fuentes de intoxicación más notables a veintiún especies: Urginea maritima, Narcissus jonquilla, N. assoanus, N. fernandesii, N. bujei, N. tazetta, N. papyraceus, Ornithogalum arabicum, Mandragora autumnalis, Carlina gummifera, Colchicum lusitanum, Merendera montana, M. filifolia, Aristolochia baetica, A. paucinervis, Ranunculus bulbosus, R. ficaria, Bryonia dioica, Oenanthe crocata, Conium maculatum y Arum italicum. Hemos diseñado una pauta de actuación en clave de cuestionario dicotómico que faculte al personal sanitario y técnico para determinar si alguna de estas plantas puede considerarse origen de un cuadro de intoxicación dado. El propósito último es facilitar las labores de triaje y diagnóstico en medicina asistencial y en los servicios de información toxicológica, depurar la sistematización de la casuística toxicológica de cara a futuras investigaciones en salud ambiental y orientar una estrategia educativa en el marco de la prevención de este tipo de riesgos ambientales.
Citas
Speed MP, Ruxton GD, Mappes J, et al. Why are defensive toxins so variable? An evolutionary perspective. Biol Rev. 2012; 87(4): 874-84. https://doi.org/10.1111/j.1469-185X.2012.00228.x
Mithöfer A, Boland W. Plant defense against herbivores: chemical aspects. Ann Rev Plant Biol. 2012; 63: 431-50. https://doi.org/10.1146/annurev-arplant-042110-103854
Serrano T. Toxic plants: knowledge, medicinal uses and potential human health risks. Environ Ecol Res. 2018; 6(5): 487-92. https://doi.org/10.13189/eer.2018.060509
Nogué S, Sanz-Gallén P, Blanché C. Intoxicaciones por plantas (I). Med Integr. 2000; 36(10): 371-9.
Nogué S, Simón J, Blanché C, et al. Intoxicaciones por plantas y setas. Barcelona: Laboratorios Menarini; 2009.
Colombo ML, Assisi F, Della Puppa T, et al. Most commonly plant exposures and intoxications from outdoor toxic plants. J Pharm Sci & Res. 2010; 2(7): 417-25.
Colombo ML, Falciola C, Bicchi C, et al. Toxic plants: the role of a pharmaceutical botanist as a support of the EAD (Emergency Alert Department) hospital. En: International Plant Science Conference (IPSC): from nature to technological exploitations. Florencia: Società Botanica Italiana; 2014.
Flesch F. Intoxications d’origine végétale. Traité de Médecine Akos 2005; 7-1057. https://doi.org/10.1016/j.emcmed.2005.08.001
Federici S, Fontana D, Galimberti A, et al. A rapid diagnostic approach to identify poisonous plants using DNA barcoding data. Plant Biosyst. 2015; 149(3):1-9. https://doi.org/10.1080/11263504.2014.941031
Cornara L, Smerigilio A, Frigerio J, et al. The problem of misidentification between edible and poisonous wild plants: reports from the Mediterranean area. Food Chem Toxicol. 2018; 119: 112-21. https://doi.org/10.1016/j.fct.2018.04.066
Yael Lurie MD, Pinhas Fainmesse MD, Moshe Yosef MD, et al. Remote identification of poisonous plants by cell-phone camera and online communication. Isr Med Assoc J. 2008; 10(11): 802-3.
Otter J, Mayer S., Tomaszewski CA. Swipe Right: a comparison of accuracy of plant identification apps for toxic plants. J Med Toxicol. 2021; 17(12): 42–7. https://doi.org/10.1007/s13181-020-00803-6
Gutiérrez-Hernández O, Senciales-González JM, García Fernández LV. Evolución de la superficie forestal en Andalucía (1956-2007). Procesos y factores. Rev Est Andal. 2016; 33 (1): 111-148.
Valdés N, Talavera S, Fernández-Galiano E (eds.). Flora vascular de Andalucía occidental. Barcelona: Ketres; 1987.
Pardo de Santayana M, Morales R, Tardío J, et al. (eds.). Inventario español de los conocimientos tradicionales relativos a la biodiversidad. Madrid: Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente; 2014, 2018.
Castroviejo, S (Coord. Gen). Flora Iberica. Madrid: CSIC; 1986-2015.
Stevens, P.F. Angiosperm Phylogeny Website, versión 14 [actualizado en 2021; citado el 15 de marzo de 2022] Disponible en: http://www.mobot.org/MOBOT/research/Apweb/.
Hershey JC, Cebul RD, Williams SV. Clinical guidelines for using two dichotomous tests. Med Decis Making. 1986; 6(2): 68-78. https://doi.org/10.1177/0272989X8600600203
Van Sinh N, Wiermers M, Settele J. Proposal for an index to evaluate dichotomous keys. ZooKeys 2017; 685: 83-9. https://doi.org/10.3897/zookeys.685.13625
Fuchs J, Rauber-Lüthy C, Kupferschmidt H, et al. A. Acute plants poisoning: clinical features and circumstances of exposure. Clin Toxicol. 2011; 49(7): 671-80. https://doi.org/10.3109/15563650.2011.597034
Speijers, GJA. Toxicological data needed for safety evaluation and regulation on inherent plant toxins. Nat Toxins. 1995; 3(4): 222-6. https://doi.org/10.1002/nt.2620030410
Moro PA, Assisi F, Cassetti F, et al. Toxicological hazards of natural environments: clinical reports from Poison Control Centre of Milan. Urban For Urban Gree. 2009; 8(3): 179-86. https://doi.org/10.1016/j.ufug.2009.02.007
Pérez Cuadra V, Cambi V, Rueda MA, et al. Consequences of the loss of traditional knowledge: the risk of injurious and toxic plants growing in kindergartens. Ethnobot Res Appl. 2012; 10: 77-94. https://doi.org/10.17348/era.10.0.077-094
Guil Guerrero JL. The safety of edible wild plants: fuller discussion may be needed. J Food Compost Anal. 2014; 35(1): 18-20. https://doi.org/10.1016/j.jfca.2014.05.002
Hermanns-Clausen M, Koch I, Pietsch J, et al. Akzidentelle Vergiftungen mit Gartenpflanzen und Pflanzen in der freien Natur Bundesgesundheitsbl. 2019; 62: 73-83. https://doi.org/10.1007/s00103-018-2853-5
Colombo ML, Assisi F, Della Puppa T, et al. Exposures and intoxications after herb-induced poisoning: a retrospective hospital-based study. J Pharm Sci & Res. 2009; 2(2): 123-36.
Iizuka M, Waraschina T, Noro T. Bufadienolides and a new lignan from the bulbs of Urginea maritima. Chem Pharm Bull. 2001; 49(3): 282-6. https://doi.org/10.1248/cpb.49.282
Koh CH, Wu J, Chung YY, et al. Identification of Na+/K+-ATPase inhibition-independent proarrhytmic ionic mechanisms of cardiac glycosides. Sci Rep. 2017; 7(1): 2465. https://doi.org/10.1038/s41598-017-02496-4
Roberts DM, Gallapatthy G, Dunuwille A, et al. Pharmacological treatment of cardiac glycoside poisoning. Br J Clin Pharmacol. 2015; 81(3): 488-95.
Tuncock Y, Kozan O, Cavdar C, et al. Urginea maritima (squill) toxicity. Clin Toxicol. 1995; 33(1): 83-6. https://doi.org/10.3109/15563659509020221
Bastida J, Lavilla R, Viladomat F. Chemical and biological aspects of Narcissus alkaloids. En Cordell G., editor. The Alkaloids: Chemistry and Biology. The Netherlands: Elsevier. 2006. Pp. 87-179. https://doi.org/10.1016/S1099-4831(06)63003-4
Brown D. Compounds from the genus Narcissus: pharmacology, pharmacokinetics and toxicology. En: Hanks R, editor. Narcissus and daffodils. The genus Narcissus. London: Taylor & Francis. Pp. 332-54.
Berkov S, Martínez-Francés V, Bastida, et al. Evolution of alkaloid biosynthesis in the genus Narcissus. Phytochem. 2014; 99: 95-106. https://doi.org/10.1016/j.phytochem.2013.11.002
Cao ZF, Ping Y, Zhou QS. Multiple biological functins and pharmacological effects of lycorine. Sci China Chem. 2013; 56(10): 1382-91. https://doi.org/10.1007/s11426-013-4967-9
Hussein A, Yassin A. 2014. Poisoning following ingestion of Narcissus tazetta bulbs by schoolchildren. Isr Med Assoc J. 2014; 16(2): 125-126.
Ageta K, Yakushiji H, Kosaki Y, et al. A family intoxicated by daffodil bulbs mistaken for onions. Acute Med Surg. 2020; 7(1): e595. https://doi.org/https://doi.org/10.1002/ams2.595
Matulkova P, Gobin M, Evans M, et al. Gastro-intestinal poisoning due to consumption of daffodils mistaken for vegetables at commercial markets, Bristol, United Kingdom. Clin Toxicol (Phila) 2012; 50(8): 788-90. https://doi.org/10.3109/15563650.2012.718350
González JA, García-Barriuso M, Amich F. The consumption of wild and semi-domesticated edible plants in the Arribes del Dueron (Salamanca-Zamora, Spain): an analysis of traditional knowledge. Genet Resour Crop Evol. 2011; 58(7): 991-1006. https://doi.org/10.1007/s10722-010-9635-8
Boulfia M, Lamchouri F, Lachkar N, Khannach A, Zalaghi A, Toufik H. Socio-economic value and ethnobotanical study of Moroccan wild plant: Leopoldia comosa L. bulbs. Ethnobot Res Appl. 2021; 21: 1-17. https://doi.org/10.32859/era.21.05.1-17
Slenter IJM, Djajadinigrant-Laanen C, de Vries I, et al. Intoxication with Ornithogalum arabicum is a potential cause of visual impairment and irreversible blindness in dogs. Toxicon: X 2019; 4: 100014.
Mercadal G, Martínez Azorín M., Crespo MB. Confirmation of the presence of Ornithogalum umbellatum (Hyacinthaceae) in the Iberian Peninsula. Anales Jard Bot Madrid. 2017; 74(1): e049. https://doi.org/10.3989/ajbm.2437
Steckel LE, McClure MA. Oh, beautiful Star-of-Bethlehem (Ornithogalum umbellatum). Weed Rev. 2015; 29(4): 874-7. https://doi.org/10.1614/WT-D-15-00065.1
Tang Y, Li N, Duan J, et al. Structure, bioactivity, and chemical synthesis of OSW-1 and other steroidal glycosides in the genus Ornithogalum. Chem Rev. 2013; 113(7): 5480-514. https://doi.org/10.1021/cr300072s
Mimaki Y, Ori K, Sashida Y, et al. Peruvianosides A and B, novel triterpenes glycosides from the bulbs of Scilla peruviana. Bull Chem Soc Jpn. 1993; 66(4): 1182-6. https://doi.org/10.1246/bcsj.66.1182
Kihara M, Ozaki T, Kobayashi S, et al. Alkaloidal constituents of Leucojum autumnale L. (Amaryllidaceae). Chem Pharm Bull. 1995; 43(2): 318-20. https://doi.org/10.1248/cpb.43.318
Acikara OB, Yilmaz BS, Yazgan D, et al. Quantification of galtamine in Sternbergia species by high performance liquid cromatography. Turk J Pharm Sci. 2019; 16(1): 32-6. https://doi.org/10.4274/tjps.95967
Adkins JA, Miller WB. Storage organs. En: Beyl CA, Trigiano RN, eds. Plant propagation concepts and laboratory exercises. Boca Raton: CRC Press. 2018. Pp. 303-10.
Jiménez-Mejías ME, Montaño-Díaz M, López Pardo F, et al. Intoxicación atropínica por Mandragora autumnalis: descripción de quince casos. Med Clin (Barc). 1990; 95(18): 689-92.
Piccilo GA, Mondati EGM, Moro PA. Six clinical cases of Mandragora autumnalis poisoning: diagnosis and treatment. Eur J Emerg Med. 2002; 9(4): 342-7. https://doi.org/10.1097/00063110-200212000-00010
Holzman RS. The legacy of Atropos, the fate who cut the thread of life. Anesthesiology 1998; 89: 241-9.
Jackson BP, Berry MI. Hydroxytropane tiglates in the roots of Mandragora species. Phytochem. 1973; 12: 1165-6.
Vallejo JR, Peral D, Gemio P, et al. Atractylis gummifera and Centaurea ornata in the province of Badajoz (Extremadura-Spain). Ethnopharmacological importance and toxicological risk. J Ethnopharmacol. 2009; 126(2): 366-70. https://doi.org/10.1016/j.jep.2009.08.036
Daniele C, Dahamna S, Firuzi O, et al. Atractylis gummifera L. poisoning: an ethnopharmacological review. J Ethnopharmacol. 2005(2); 97: 175-81. https://doi.org/10.1016/j.jep.2004.11.025
Skalli S, Alaoui I, Pineau A, et al. L’intoxication par le chardon à glu (Atractylis gummifera L.); a propos d’un cas clinique. Bull Soc Pathol Exot. 2002; 95(4): 284-6.
Bellomaria B, Natalini P. Contenuto di colchicine in Colchicum lusitanum Brot. Inform Bot Ital. 1972; 4: 221-3.
Goutham VVN, Vandana M, Sai Kumar D, Vijayalakshmi P. A study on clinical features and outcomes of patients with Colchicum autumnale poisoning. Int J Sci Technol Res. 2020; 9(3): 5523-7.
Razinger G, Kozelj G, Gorjup V, Grenc D, Brvar M. Accidental poisoning with autumn crocus (Colchicum autumnale): a case serie. Clin Toxicol (Phila). 2021; 59(6): 493-9. https://doi.org/10.1080/15563650.2020.1832234
Gómez D, Azorín J, Bastida J, et al. Seasonal and spatial variations of alkaloids in Merendera montana in relation to chemical defense and phenology. J Chem Ecol. 2003; 29(5): 1117-26. https://doi.org/10.1023/A:1023825405565
Potěšilová H, Alcaraz C, Šantavý F. Substances from the plants of the subfamily Wurmbaeoideae and their derivatives. LXXI. Isolation of alkaloids from the plants Colchicum byzanthinum Park., C. cupani Guss., C. libanoticum Ehrenb., Merendera filifolia Camb., C. luteum Baker, and Kreysigia multiflora Reichb. Collect Czech Chem Commun. 1969; 34(7): 2128-33. https://doi.org/10.1135/cccc19692128
Achenbach H, Chan J, Wanke S, et al. Local uses of Aristolochia species and content of nephrotoxic aristolochic acid 1 and 2. A global assessment based on bibliographical sources. J Ethnopharmacol. 2009; 125(1): 108-144. https://doi.org/10.1016/j.jep.2009.05.028
Jadot I, Declèves AE, Nortier J, et al. An integrated view of aristolochic acid nephropathy: update of the literature. Int. J. Mol. Sci. 2017; 18, 297. https://doi.org/10.3390/ijms18020297
Peña M, Borrás M, Ramos J, et al. Rapidly progressive interstitial renal fibrosis due to a chronic intake of a herb (Aristolochia pistolochia) infusion. Nephrol Dial Transplant. 1996; 11: 1359-60. https://doi.org/10.1093/NDT/11.7.1359
Achenbach H, Fischer A. 6-O--D-glucoside of aristolochic acid IIIa and other components from the roots of Aristolochia baetica. Planta Med. 1997; 63(6): 579. https://doi.org/ 10.1055/s-2006-957777
Bourhia M, Said AAH, Chaanoun A, et al. Phytochemical screening and toxicological study of Aristolochia baetica Linn Roots: histopathological and biochemical evidence. J Toxicol. 2019; 2019: 8203832. https://doi.org/10.1155/2019/8203832
Neag T, Olah NK, Hanganu D, et al. The anemonin content of four different Ranunculus species. Pak J Pharm Sci. 2018; 31(5): 2027-32.
Bonora A, Botta B, Menziani-Andreoli E, et al. Organ-specific distribution and accumulation of protoanemonin in Ranunculus ficaria L. Biochem Physiol Pflanzen. 1988; 183(5): 443-7. https://doi.org/10.1016/S0015-3796(88)80059-3
Hill R, van Heyningen R. Ranunculin: the precursor of the vesicant substance of the buttercup. Biochem J. 1951; 49(3): 332-5. https://doi.org/10.1042/bj0490332
D’Aertrycke OM, Wroux JBP, Hantson P. Recurrent supraventricular tachyarrhythmia following Ranunculus acris (“meadow buttercup”) ingestion. Clin Toxicol. 2019; 58(7): 780-1. https://doi.org/10.1080/15563650.2019.1669796
Kocak AO, Saritemur M, Atac K, et al. A rare chemical burn due to Ranunculus arvensis: three case reports. Ann Saudi Med. 2016; 36(1): 89-91. https://doi.org/10.5144/0256-4947.2016.89
Pohlman J. Die cucurbitacine in Bryonia alba und Bryonia dioica. Phytochem. 1975; 14(7): 1587-9. https://doi.org/10.1016/0031-9422(75)85356-8
Yamani A, Bunel V, Antoni MH, et al. Substitution between Aristolochia and Bryonia genus in North-Eastern Morocco: toxicological implications. J Ethnopharmacol. 2015; 166: 250-60. https://doi.org/10.1016/j.jep.2015.03.036
Gry J, Soborg I, Andersson HC. Cucurbitacins in plant food. Copenhagen: Nordic Council of Ministers; 2006.
Bourhia M, Bari A, Ali SS, et al. Phytochemistry and toxicological assessment of Bryonia dioica roots used in north-African alternative medicine. Open Chem. 2019; 17: 1403-11. https://doi.org/10.1515/chem-2019-0150
Stirpe F, Barbieri L, Battelli MG, et al. Bryodin, a ribosome-inactivating protein from the roosts of Bryonia dioica L. (white bryony). Biochem J. 1986; 240(3): 659-65. https://doi.org/10.1042/bj2400659
Ball MJ, Flather ML, Forfar JC. Hemlock water dropwort poisoning. Postgrad Med J. 1987; 63(739): 363-5. https://doi.org/10.1136/pgmj.63.739.363
Downs C, Phillips J, Ranger A, et al. A hemlock water dropwort curry: a case of multiple poisoning. Emerg Med J. 2002; 19: 472-3. https://doi.org/10.1136/emj.19.5.472
Schep LJ, Slaughter RJ, Becket G, et al. Poisoning due to water hemlock. Clin Toxicol. 2009; 47: 270-8. https://doi.org/10.1080/15563650902904332
Henry FJ, Cadiet J, Javaudin F, et al. Oenanthe crocata: a case report of multiple poisoning with fatal outcome. J Emerg Med. 2020; 59(1): 9-11. https://doi.org/10.1016/j.jemermed.2020.04.014
Vetter J. Poison hemlock (Conium maculatum L.). Food Chem Toxicol. 2004; 42(1): 1373-82. https://doi.org/10.1016/j.fct.2004.04.009
Konca C, Kahramaner Z, Bosnak M, et al. Hemlock (Conium maculatum L.) poisoning in a child. Turk J Emerg Med. 2014; 14(1): 34-6. https://doi.org/10.5505/1304.7361.2013.23500
Boskabadi J, Askari Z, Zakariaei Z, et al. Mild-to-severe poisoning due to Conium maculatum as a toxic herb: a case series. Clin Case Rep. 2021; 9: e04509. https://doi.org//10.1002/ccr3.4509
López TA, Cid MS, Bianchini ML, et al. Biochemistry of hemlock (Conium maculatum L.) alkaloids and their acute and chronic toxicity in livestock. A review. Toxicon 1999; 37(6): 841- https://doi.org//65. 10.1016/s0041-0101(98)00204-9
Chizzola R, Lohwasser U. Diversity of secondary metabolites in roots from Conium maculatum L. Plants 2020; 9: 939. https://doi.org//10.3390/plants9080939
Prakash Raju KNJ, Goel K, Anandhi D, Pandit VR, Surendar R, Sasikumar M. Wild tuber poisoning: Arum maculatum. A rare case report. Int J Cri Illn Inj Sci. 2018; 8(2): 111-4. https://doi.org/10.4103/IJCIIS.IJCIIS_9_18
Lieske CL. Spring-blooming bulbs: a year-round problem. Vet Med. 2002; 97: 580-588.
Choudhary D, Alam A. Pharmacology and phytochemistry of isoflavonoids from Iris species. J of Pharmacol & Clin Res. 2017; 3(2): 555609. https://10.19080/JPCR.2017.03.555609.
Paolino G, Di Nicola MR, di Pompeo P, Dorne JCM, Mercuri SR. Key to medically relevant Italian spider bites: a practical quick recognition tool for clinicians. Clin Ter. 2021; 172(4): 336-46. https://doi.org/10.7417/CT.2021.2338
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Derechos de autor 2022 Revista de Salud Ambiental