Use of ecological metabolomics as a complementary tool for the study of the integral health of ecosystems
PDF (Español (España))

Keywords

ecosystem health
vulnerability
ecological metabolomics

How to Cite

Lara-Del Río, A. de J., Flores-Ramírez, R., Díaz-Barriga, F., García-Chávez, E., & Espinosa Reyes, G. (2020). Use of ecological metabolomics as a complementary tool for the study of the integral health of ecosystems. Spanish Journal of Environmental Health, 20(1), 3–13. Retrieved from https://ojs.diffundit.com/index.php/rsa/article/view/1011

Abstract

The planet's ecosystems show symptoms that clearly warn us that resilience processes are no longer as efficient; they are in decline as a result of of various human activities that alter their physical, chemical and biological components and their interrelationships. Therefore, this rapid deterioration calls for more appropriate environmental monitoring, increasingly intensifying the need for indicators that are more operational in nature. One of the limitations that arise when monitoring an ecosystem is that there are no tools for detecting and revealing potentially harmful changes in its functional capabilities early on. However, the holistic approach of the so-called omics sciences (genomics, transcriptomics, metabolomics), especially metabolomics, could be an important tool for generating data to access the metacognition of the concept of ecological vulnerability and its importance in monitoring an ecosystem. The basis of metabolomics is the monitoring of phenotypic variability in response to environmental changes (biotic and biotic interactions), which permits a better analysis of the different response capabilities provided by the phenotypic plasticity of each species, thus allowing the metabolic patway that is associated with this plasticity, to be determined. The metabolic responses of species are essential to monitoring ecosystems. This approach shows great potential for obtaining not only individual data on organisms but also networks of data on the metabolic behavior of populations or ecosystems in a spatial and temporal manner, which makes it a very interesting tool for monitoring ecosystems.
PDF (Español (España))

References

Global Biodiversity. [citado 16/05/2019] Disponible en: https://www.cbd.int/gbo3/?pub=6667&section=6705.

What is Ecosystem Health?. [citado 16/05/2019] Disponible en: https://www.seadocsociety.org/what-is-ecosystem-health.

Ippolito A, Sala S, Faber JH, Vighi M. Ecological vulnerability analysis: A river basin case study. Sci Total Environ. 2010; 408(18):3880–90.

Weißhuhn P, Müller F, Wiggering H. Ecosystem Vulnerability Review: Proposal of an Interdisciplinary Ecosystem Assessment Approach. Environ Manage. 2018; 61(6):904–15.

Burkhard B, Müller F, Lill A. Ecosystem Health Indicators. En: Ecological Indicators, vol [2] of Encyclopedia of Ecology, 5 vols. 2008. p. 1132–8.

Bundy, J.G., Davey, M.P. & Viant, M.R. Environmental metabolomics: a critical review and future perspectives. Metabolomics, 2009; 5(1):3

Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics 2001; 2(3):155–68.

Sardans J, Peñuelas J, Rivas-Ubach A. Ecological metabolomics: overview of current developments and future challenges. Chemoecology, 2011; 21(4):191–225.

European Bioinformatics Institute. What is metabolomics?. [citado 22/01/2019] Disponible en: https://www.ebi.ac.uk/ training/online/course/introduction-metabolomics/what- metabolomics.

Metabolismo Celular. [citado 16/012019]. Disponible en: http://www.objetos.unam.mx/biologia/metabolismoCelular/ index.html.

Portal Académico del CCH. [citado 16/012019] Disponible en: https://portalacademico.cch.unam.mx/alumno/biologia1/ unidad2/metabolismo/definicion.

Arbona Mengual V, López Climent MF, Pérez Clemente RM, Gómez Cadenas A. La metabolómica como herramienta para la evaluación fisiológica y nutricional en citricultura. Revista Internacional de cítricos, 2014; 2(1)104-8.

Barbas Coral RD. La ventana de la metabolómica, vislumbrando el panorama de sus aplicaciones. La metabolómica, 2015; 186:11.

Sardans, Jordi RU Albert, Peñuelas, Josep. Ecometabolómica | Investigación y Ciencia | Investigación y Ciencia. [citado 19/032019] Disponible en: https://www.investigacionyciencia. es/revistas/investigacion-y-ciencia/el-origen-de-la- multicelularidad-568/ecometabolmica-10804.

Metabolomics: Understanding Metabolism in the 21st Century - MOOC. [citado 19/03/2019] Disponible en: https:// www.birmingham.ac.uk/postgraduate/courses/moocs/ metabolomics.aspx.

Eggen RIL, Behra R, Burkhardt-Holm P, Escher BI, Schweigert N. Challenges in ecotoxicology. Environ Sci Technol. 2004; 38(3):58A-64A.

Poulin RX, Pohnert G. Simplifying the complex: metabolomics approaches in chemical ecology. Anal Bioanal Chem. 2019; 411(1):13–9.

Matich EK, Chavez Soria NG, Aga DS, Atilla-Gokcumen GE. Applications of metabolomics in assessing ecological effects of emerging contaminants and pollutants on plants. J Hazard Mater. 2019 ;373:527–35.

Simmons DBD, Benskin JP, Cosgrove JR, Duncker BP, Ekman DR, Martyniuk CJ, et al. Omics for aquatic ecotoxicology: Control of extraneous variability to enhance the analysis of environmental effects. Environ Toxicol Chem. 2015; 34(8):1693–704.

Methodologies and applications in the environmental sciences. [citado 19/03/2019] Disponible en: https://www.jstage.jst.go.jp/ article/jpestics/31/3/31_3_245/_article.

Bedia C, Cardoso P, Dalmau N, Garreta-Lara E, Gómez-Canela C, Gorrochategui E, et al. Data Analysis for Omic Sciences: Methods and Applications. 2018; 82:533–82.

Viant MR, Werner I, Rosenblum ES, Gantner AS, Tjeerdema RS, Johnson ML. Correlation between heat-shock protein induction and reduced metabolic condition in juvenile steelhead trout (Oncorhynchus mykiss) chronically exposed to elevated temperature. Fish Physiol Biochem. 2003; 29(2):159–71.

Cao M, Wang D, Mao Y, Kong F, Bi G, Xing Q, et al. Integrating transcriptomics and metabolomics to characterize the regulation of EPA biosynthesis in response to cold stress in seaweed Bangia fuscopurpurea. PLOS ONE, 2017; 12(12):e0186986.

Gandar A, Laffaille P, Canlet C, Tremblay-Franco M, Gautier R, Perrault A, et al. Adaptive response under multiple stress exposure in fish: From the molecular to individual level. Chemosphere. 2017; 188:60–72.

Serra-Compte A, Álvarez-Muñoz D, Solé M, Cáceres N, Barceló D, Rodríguez-Mozaz S. Comprehensive study of sulfamethoxazole effects in marine mussels: Bioconcentration, enzymatic activities and metabolomics. Environ Res, 2019; 173:12–22.

Viant MR. Improved methods for the acquisition and 41. interpretation of NMR metabolomic data. Biochem Biophys Res Commun. 2003; 310(3):943–8.

Zhang W, Tan NGJ, Fu B, Li SFY. Metallomics and NMR-based metabolomics of Chlorella sp. reveal the synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress. Met Integr Biometal Sci. 2015; 7(3):426–38.

Bonnefille B, Gomez E, Alali M, Rosain D, Fenet H, Courant F. Metabolomics assessment of the effects of diclofenac exposure on Mytilus galloprovincialis: Potential effects on osmoregulation and reproduction. Sci Total Environ. 2018; 613–614:611–8.

Maisano M, Cappello T, Natalotto A, Vitale V, Parrino V, Giannetto A, et al. Effects of petrochemical contamination on caged marine mussels using a multi-biomarker approach: Histological changes, neurotoxicity and hypoxic stress. Mar Environ Res. 2017; 128:114–23.

Thouvenot L, Deleu C, Berardocco S, Haury J, Thiébaut G. Characterization of the salt stress vulnerability of three invasive freshwater plant species using a metabolic profiling approach. J Plant Physiol. 2015; 175:113–21.

Holzinger A, Karsten U. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. Front Plant Sci. 2013; 4:327.

Chou L, Kenig F, Murray AE, Fritsen CH, Doran PT. Effects of legacy metabolites from previous ecosystems on the environmental metabolomics of the brine of Lake Vida, East Antarctica. Org Geochem. 2018; 122:161–70.

Riedl J, Kluender C, Sans-Piché F, Heilmeier H, Altenburger R, Schmitt-Jansen M. Spatial and temporal variation in metabolic fingerprints of field-growing Myriophyllum spicatum. Aquat Bot. 2012; 102:34–43.

Hou J, Wang L, Wang C, Zhang S, Liu H, Li S, et al. Toxicity and mechanisms of action of titanium dioxide nanoparticles in

living organisms. J Environ Sci. 2019; 75:40–53.

Revel M, Châtel A, Mouneyrac C. Omics tools: New challenges in aquatic nanotoxicology? Aquat Toxicol Amst Neth. 2017; 193:72–85.

Teng M, Zhu W, Wang D, Qi S, Wang Y, Yan J, et al. Metabolomics and transcriptomics reveal the toxicity of difenoconazole to the early life stages of zebrafish (Danio rerio). Aquat Toxicol 2018; 194:112–20.

Barboza LGA, Vieira LR, Branco V, Figueiredo N, Carvalho F, Carvalho C, et al. Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquat Toxicol. 2018; 195:49–57.

Arukwe A, Myburgh J, Langberg HA, Adeogun AO, Braa IG, Moeder M, et al. Developmental alterations and endocrine- disruptive responses in farmed Nile crocodiles (Crocodylus niloticus) exposed to contaminants from the Crocodile River, South Africa. Aquat Toxicol. 2016; ;173:83-93.

Ortiz-Villanueva E, Jaumot J, Martínez R, Navarro-Martín L, Piña B, Tauler R. Assessment of endocrine disruptors effects on zebrafish (Danio rerio) embryos by untargeted LC-HRMS metabolomic analysis. Sci Total Environ. 2018; 635:156–66.

Collins JP. Amphibian decline and extinction: what we know and what we need to learn. Dis Aquat Organ. 2010; 92(2–3):93–9.

Gibbons JW, Scott DE, Ryan TJ, Buhlmann KA, Tuberville TD, Metts BS, et al. The Global Decline of Reptiles, Déjà Vu AmphibiansReptile species are declining on a global scale. Six significant threats to reptile populations are habitat loss and degradation, introduced invasive species, environmental pollution, disease, unsustainable use, and global climate change. BioScience. 2000; 50(8):653–66.

Whitfield SM, Bell KE, Philippi T, Sasa M, Bolaños F, Chaves G, et al. Amphibian and reptile declines over 35 years at La Selva, Costa Rica. Proc Natl Acad Sci. 2007; 104(20):8352–6.

Brühl CA, Schmidt T, Pieper S, Alscher A. Terrestrial pesticide exposure of amphibians: An underestimated cause of global decline? Sci Rep. 2013; 3:1135.

Hayes TB, Case P, Chui S, Chung D, Haeffele C, Haston K, et al. Pesticide Mixtures, Endocrine Disruption, and Amphibian Declines: Are We Underestimating the Impact?. Environ Health. 2006; 114(Suppl 1):40–50.

Rajaguru P, Kalpana R, Hema A, Suba S, Baskarasethupathi B, Kumar PA, et al. Genotoxicity of some sulfur dyes on tadpoles (Rana hexadactyla) measured using the comet assay. Environ Mol Mutagen. 2001; 38(4):316–22.

Ralph S, Petras M, Pandrangi R, Vrzoc M. Alkaline single-cell gel (comet) assay and genotoxicity monitoring using two species of tadpoles. Environ Mol Mutagen. 1996; 28(2):112–20.

Denton RD, Bernot MJ. Effects of Multiple Agricultural Chemicals on Northern Leopard Frog, Lithobates Pipiens, Larvae. Proc Indiana Acad Sci. 2011; 120(1/2):39–44.

Attademo AM, Peltzer PM, Lajmanovich RC, Basso A, Junges C. Tissue-Specific Variations of Esterase Activities in the Tadpoles and Adults of Pseudis paradoxa (Anura: Hylidae). Water Air. 2014; 225(3):1903.

Cusaac JPW, Mimbs WH, Belden JB, Smith LM, McMurry ST. Terrestrial exposure and effects of Headline AMP® Fungicide on amphibians. Ecotoxicology. 2015; 24(6):1341–51.

Denoël M, D’Hooghe B, Ficetola GF, Brasseur C, De Pauw E, Thomé J-P, et al. Using sets of behavioral biomarkers to assess short-term effects of pesticide: a study case with endosulfan on frog tadpoles. Ecotoxicology. 2012; 21(4):1240–50.

Quaranta A, Bellantuono V, Cassano G, Lippe C. Why Amphibians Are More Sensitive than Mammals to Xenobiotics. PLOS ONE. 2009; 4(11):e7699.

Carlsson G, Tydén E. Development and evaluation of gene expression biomarkers for chemical pollution in common frog (Rana temporaria) tadpoles. Environ Sci Pollut Res Int. 2018; 25(33):33131–9.

do Amaral DF, Montalvão MF, de Oliveira Mendes B, da Costa Araújo AP, de Lima Rodrigues AS, Malafaia G. Sub-lethal effects induced by a mixture of different pharmaceutical drugs in predicted environmentally relevant concentrations on Lithobates catesbeianus (Shaw, 1802) (Anura, ranidae) tadpoles. Environ Sci Pollut Res Int. 2019; 26(1):600–16.

do Amaral DF, Montalvão MF, de Oliveira Mendes B, da Silva Castro AL, Malafaia G. Behavioral and mutagenic biomarkers in tadpoles exposed to different abamectin concentrations. Environ Sci Pollut Res Int. 2018; 25(13):12932–46.

Jones-Costa M, Franco-Belussi L, Vidal FAP, Gongora NP, Castanho LM, Dos Santos Carvalho C, et al. Cardiac biomarkers as sensitive tools to evaluate the impact of xenobiotics on amphibians: the effects of anionic surfactant linear alkylbenzene sulfonate (LAS). Ecotoxicol Environ Saf. 2018; 151:184–90.

Lambert MR, Skelly DK, Ezaz T. Sex-linked markers in the North American green frog (Rana clamitans) developed using DArTseq provide early insight into sex chromosome evolution. BMC Genomics. 2016; 17(1):844.

Snyder MN, Henderson WM, Glinski DA, Purucker ST. Biomarker analysis of American toad (Anaxyrus americanus) and grey tree frog (Hyla versicolor) tadpoles following exposure to atrazine. Aquat Toxicol Amst Neth. 2017; 182:184–93.

Ichu T-A, Han J, Borchers CH, Lesperance M, Helbing CC. Metabolomic insights into system-wide coordination of vertebrate metamorphosis. BMC Dev Biol. 2014; 14:5.

Luehr TC, Koide EM, Wang X, Han J, Borchers CH, Helbing CC. Metabolomic insights into the effects of thyroid hormone on Rana [Lithobates] catesbeiana metamorphosis using whole- body Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging (MALDI-MSI). Gen Comp Endocrinol. 2018; 265:237–45.

Van Meter RJ, Glinski DA, Purucker ST, Henderson WM. Influence of exposure to pesticide mixtures on the metabolomic profile in post-metamorphic green frogs (Lithobates clamitans). Sci Total Environ. mayo de 2018; 624:1348–59.

Cavalcante ID, Antoniazzi MM, Jared C, Pires OR, Sciani JM, Pimenta DC. Venomics analyses of the skin secretion of Dermatonotus muelleri: Preliminary proteomic and metabolomic profiling. Toxicon. 2017; 130:127–35.

Duellman WE, Trueb L. Biology of Amphibians. Edición: New Ed. Baltimore: Johns Hopkins University Press; 1994. 696 p.

Rodríguez C, Rollins-Smith L, Ibáñez R, Durant-Archibold AA, Gutiérrez M. Toxins and pharmacologically active compounds from species of the family Bufonidae (Amphibia, Anura). J Ethnopharmacol. 2017; 198:235–54.

Ziarrusta H, Mijangos L, Picart-Armada S, Irazola M, Perera- Lluna A, Usobiaga A, et al. Non-targeted metabolomics reveals alterations in liver and plasma of gilt-head bream exposed to oxybenzone. Chemosphere. 2018; 211:624–31.

Liu X, Liu C, Wang P, Liang Y, Zhan J, Zhou Z, et al. Distribution, metabolism and metabolic disturbances of alpha-cypermethrin in embryo development, chick growth and adult hens. Environ Pollut Barking Essex 1987. 2019; 249:390–7.

Alijagic A, Gaglio D, Napodano E, Russo R, Costa C, Benada O, et al. Titanium dioxide nanoparticles temporarily influence the sea urchin immunological state suppressing inflammatory- relate gene transcription and boosting antioxidant metabolic activity. J Hazard Mater. 2020; 384.

Shi C, Han X, Mao X, Fan C, Jin M. Metabolic profiling of liver tissues in mice after instillation of fine particulate matter. Sci Total Environ. 2019; 696.

Bundy JG, Sidhu JK, Rana F, Spurgeon DJ, Svendsen C, Wren JF, et al. “Systems toxicology” approach identifies coordinated metabolic responses to copper in a terrestrial non-model invertebrate, the earthworm Lumbricus rubellus. BMC Biol. 2008; 6(1):25.

Watanabe M, Roth TL, Bauer SJ, Lane A, Romick-Rosendale LE. Feasibility Study of NMR Based Serum Metabolomic Profiling to Animal Health Monitoring: A Case Study on Iron Storage Disease in Captive Sumatran Rhinoceros (Dicerorhinus sumatrensis). PLOS ONE. 2016; 11(5):e0156318.

Broadrup RL, Mayack C, Schick SJ, Eppley EJ, White HK, Macherone A. Honey bee (Apis mellifera) exposomes and dysregulated metabolic pathways associated with Nosema ceranae infection. PLoS ONE. 2019; 14(3):1–18.

Cordier S, Bonvallot N, Canlet C, Blas-Y-Estrada F, Gautier R, Tremblay-Franco M, et al. Metabolome disruption of pregnant rats and their offspring resulting from repeated exposure to a pesticide mixture representative of environmental contamination in Brittany. PLoS ONE. 2018; 13(6):1–21.

Li M-H, Ruan L-Y, Zhou J-W, Fu Y-H, Jiang L, Zhao H, et al. Metabolic profiling of goldfish (Carassius auratis) after long- term glyphosate-based herbicide exposure. Aquat Toxicol Amst Neth. 2017; 188:159–69.

Dani VD, Simpson AJ, Simpson MJ. Analysis of earthworm sublethal toxic responses to atrazine exposure using 1 H nuclear magnetic resonance (NMR)-based metabolomics. Environ Toxicol Chem. 2018; 37(2):473–80.

Ralston-Hooper K, Hopf A, Oh C, Zhang X, Adamec J, Sepúlveda MS. Development of GCxGC/TOF-MS metabolomics for use in ecotoxicological studies with invertebrates. Aquat Toxicol Amst Neth. el 2 de junio de 2008;88(1):48–52.

Lukowicz C, Ellero-Simatos S, Régnier M, Polizzi A, Lasserre F, Montagner A, et al. Metabolic Effects of a Chronic Dietary Exposure to a Low-Dose Pesticide Cocktail in Mice: Sexual Dimorphism and Role of the Constitutive Androstane Receptor. Environ Health Perspect. 2018; 126(6):067007.

Glinski DA, Purucker ST, Meter RJV, Black MC, Henderson WM. Endogenous and exogenous biomarker analysis in terrestrial phase amphibians (Lithobates sphenocephala) following dermal exposure to pesticide mixtures. Environ Chem. 2018; 16(1):55–67.

Yuk J, Simpson MJ, Simpson AJ. 1-D and 2-D NMR metabolomics of earthworm responses to sub-lethal trifluralin and endosulfan exposure. 2011; 8(3):281–94.

Vohsen SA, Fisher CR, Baums IB. Metabolomic richness and fingerprints of deep-sea coral species and populations. Metabolomics. 2019. 15; 34-38.

Vastag L, Jorgensen P, Peshkin L, Wei R, Rabinowitz JD, Kirschner MW .Remodeling of the Metabolome during Early Frog Development . 2011; 6(2): e16881.

Melvin SD, Leusch FDL, Carroll AR. Metabolite profiles of striped marsh frog (Limnodynastes peronii) larvae exposed to the anti-androgenic fungicides vinclozolin and propiconazole are consistent with altered steroidogenesis and oxidative stress. Aquat Toxicol Amst Neth. 2018; 199:232–9.

The articles published in this journal are subject to the following terms and conditions:

  1. The journal retains copyright of the articles published, and encourages and permits their reuse under the licence indicated at point 2.
  2. The articles are published in the online edition of the journal under licence Creative Commons Attribution-Non Commercial 4.0 (CC BY-NC 4.0). They can be copied, used, disseminated, transmitted, and publicly displayed, providing that the authorship, URL address and the Journal are cited, and that no commercial use is made of them.
  3. The authors agree with terms of licence use of the journal, with the self-archiving conditions and with the open access policy.
  4. In the event of reuse of the articles published, the existence and specifications of the terms of licence use must be mentioned, in addition to citing the authorship and original source of the their publication.

Downloads

Download data is not yet available.