Numerical Simulation of Boiler Explosions: Guidelines for Plant Layout as a Damage Mitigation Measure
PDF (Español (España))

Keywords

boilers
explosion
hazard assessment
hazard analysis
risks
regulation
risk assessment
risk analysis

How to Cite

Morales-Vargas, R. A. (2020). Numerical Simulation of Boiler Explosions: Guidelines for Plant Layout as a Damage Mitigation Measure. Spanish Journal of Environmental Health, 20(2), 137–149. Retrieved from https://ojs.diffundit.com/index.php/rsa/article/view/1041

Abstract

Boiler explosions in various countries have caused costly, serious damage to workplaces and injuries to employees ranging from burns and lacerations to death. The main cause of boiler explosion is a low water level, which causes overheating of the boiler tubes, leading to sudden vaporization, an increase in pressure, and catastrophic failure. This article reviews the technical requirements for the safe operation of boilers in the regulations of Latin American countries, focusing on the correct location and distancing of the boiler room according to the major hazard the explosion of the boiler. Current location requirements in Latin America are compared to those in other international legislations. In addition, potential damagesare analyzed according to standard explosion cases for common boiler sizes in Latin America and from a leading manufacturer and to the author ́s experience. The resulting peak overpressure was calculated for these cases as a function of distance, the damage of the shock wave being estimated in order to recommend an ideal or improved boiler room location to thus minimize the damage from explosions and the severity of water vapor burns. Minimum “safe distances” between the boiler and other structures and equipment were estimated to also protect human beings from overpressures. The usefulness of simple distance-overpressure models in combination with Probit models is discussed in relation to more complex models of fluid dynamics and finite-element structural calculations. It is proposed that mandatory analysis of consequences, using similar or more elaborate models, be incorporated in Latin American and other international legislations and used to guide plant layout.
PDF (Español (España))

References

Creus A. Fiabilidad y Seguridad: Su aplicación en procesos industriales. Marcombo. Barcelona, 1992.

Shrivastava R, Patel P. Hazards Identification and Risk Assessment in Thermal Power Plant. Int J Eng Res Technol 2014; 3(4):1737.

Ibrahim MF, El-Arabaty HA, Moharran I. Effect of steam boiler explosion on boiler room and adjacent buildings structure. Int J Eng Sci 2019; Vol, 8, No, 02, Series II: 17-37.

Fang Q, Zhe Z, Qingmin S. Application of Phast in the Quantitative Consequence Analysis for the Boiler BLEVE, En: ISDEA’13: Proceedings of the 2013 Third International Conference on Intelligent System Design and Engineering Applications; 2013, pp, 369-372 https://doi,org/10,1109/ISDEA,2012,92.

Global Asset Protection Services LLC, Oil and Chemical Plant Layout and Spacing. GAPS Guidelines. GAP 2,5,2, 2015.

Cozzani V, Salzano B. The quantitative assessment of domino effects caused by overpressure Part I, Probit models. J. Hazard. Mater 2004; A 107, 67-80.

González-Ferradás E, Díaz-Alonso F, Sánchez-Pérez JF, Doval Miñarro M, Miñana-Aznar A, Ruiz-Gimeno J, Martínez-Alonso J. Consequence Analysis to Buildings from Bursting Cylindrical Vessels, Process Safety Progress, 2009; Vol, 28(2): 179-189.

National Board Inspection Code 2019 (ANSI, NB-23), EEUU.

National Fire Protection Association (NFPA) A 85. Boiler and Combustion Systems Hazards Code, 2015 Edition, Massachussetts, EEUU.

Directiva 2014/68/UE del Parlamento Europeo y del Consejo, de 15 de mayo de 2014, relativa a la armonización de las legislaciones de los Estados miembros sobre la comercialización de equipos a presión. DOUE, número L 184/164 de 27 de junio de 2014.

Scientific American. Cause of Boiler Explosions. Scientific American 3, 25new, 386 (December 1860) doi:10,1038/ scientificamerican12151860-386. [citado 12/05/2020]. Disponible en: https://www.scientificamerican.com/article/ cause-of-boiler-explosions/.

National Board of Boiler and Pressure Vessel Inspectors, 2002. Incident Report, Bulletin, 2003; 58(2): 2-3.

National Board of Boiler and Pressure Vessel Inspectors, 2002. Boiler accidents report: To err is human. Bulletin, 2002; Vol, 57(2). [citado 12/05/2020]. Disponible en: https://www.achrnews. com/articles/87615-boiler-accident-reports-to-err-is-human.

Oelker-Behn A. Accidentes en Calderas, THERMAL ENGINEERING LTDA, (sin fecha). [citado 12/05/2020]. Disponible en: http://www.thermal.cl/docs/articulos_tecnicos/articulo___ accidentes_en_calderas.pdf.

Editorial. Combustión, Energía y Ambiente. Relación de accidentes en el primer semestre, Calderas. Guía del Usuario en la Industria y el Comercio. CEACA, 2020 1(1), 6-8.

American Society of Power Engineers. Your Boiler Room a Time Bomb? [citado 12/05/2020]. Disponible en: https://asope.org/ sites/default/files/Documents/Your_Boiler_Room-A%20_Time_ Bomb-2.pdf.

Estado de Tennesee (EEUU), 2007. Department of Labor and Workforce Development, Division Of Boiler And Elevator Inspection, Boiler Accident Dana Corporation, Paris Extrusion Plant. [citado 12/05/2020]. Disponible en: http://www.ipemaritimes.com/bxpl.pdf.

Lees FP, Loss Prevention in the Process Industries. Butterworths, Vol, 1. London and Boston, 1980.

Casal J, Arnaldos J, Montiel H, Planas-Cuchi E, Vílchez JA. Modeling and Understanding BLEVEs (Capítulo 22). En Handbook of Hazardous Materials Spills Technology: 22,1- 22,27. [citado 12/05/2020]. Disponible en: http://aevnmont. free.fr/SACH-BOOKS/Petrochemistry/Handbook%20of%20 Hazardous%20Materials%20Spills%20Technology/Part%20 V,%20Spill%20Modeling/22,%20Modeling%20and%20 Understanding%20BLEVEs.pdf.

Birk AM, Davison C, Cunningham M. Blast overpressures from medium scale BLEVE tests. J Loss Prev Process Ind 2007; 20: 194-206.

Sochet I, Blast effects of external explosions. En: Eighth International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions, Yokohama, Japón: Sep, 2010. [citado 12/05/2020]. Disponible en: https://hal.archives-ouvertes.fr/ hal-00629253/document.

Casal J, Montiel H, Planas-Cuchi E, Vílchez JA. “BLEVE-bola de 36. fuego” (Capítulo 6), En: Análisis del riesgo en instalaciones industriales. Editorial Alfaomega; , Bogotá, 2001, pp, 173-205.

The Netherlands Organization of Applied Scientific Research 37. (TNO). Methods for the calculation of physical effects due to releases of hazardous materials (gases and liquids). “The Yellow Book” CPR 14E, 3ra, Ed, La Haya, Reino de los Países Bajos, 2005.

Díaz-Alonso F, González-Ferradás E, Sánchez-Pérez JF, Miñana- Aznar A, Ruiz-Gimeno J, Martínez-Alonso J. Characteristic overpressure-impulse-distance curves for the detonation of explosives, pyrotechnics or unstable substances. J Loss Prev Process Ind 2006; 19, 724-728.

Van de Berg AC, Lannoy A. 1993. Methods for Vapor Cloud Explosion Blast Modelling. J. Hazard Mater 1993; 34, 151-171.

González-Ferradás E, Díaz-Alonso F, Sánchez-Pérez JF, Miñana- Aznar A, Ruiz-Gimeno J, Martínez-Alonso J. Characteristic overpressure-impulse-distance curves for Vessel Burst. Process. Saf. Prog (AICHE) 2006; Vol, 25(3): 250-254.

Instituto Nacional de Seguridad e Higiene del Trabajo (Ministerio de Trabajo y Asuntos Sociales de España. NTP 291: Modelos de vulnerabilidad de las personas por accidentes mayores: método Probit. [citado 12/05/2020]. Disponible en: https://www.cso.go.cr/

legislacion/notas_tecnicas_preventivas_insht/NTP%20291%20-%20Modelos%20de%20vulnerabilidad%20de%20las%20personas%20por%20accidentes%20mayores%20metodo%20Probit.pdf.

Zaghloul A, Ranaweera P, Mohotti D. Assessment of Blast Effects on Passengers in Underground Trains, En: 25th Australian Conference on Mechanics of Structures and Materials (ACMSM25) Brisbane, Australia; 2018.

The Netherlands Organization of Applied Scientific Research (TNO). Methods for the determination of possible damage to people and objects resulting from release of hazardous materials “The Green Book” CPR 16E, 1ra, Ed, La Haya, Reino de los Países Bajos, 1992.

Díaz-Ovalle C, López-Molina A, Vázquez-Román R. A CFD-based Approach to Predict Explosion Overpressure: A Comparison to Current Methods, Chem, Biochem, Eng, Q, 2016; 30(4): 419-427.

Kakogiannis D, Van Hemlrijck D, Wastiels J, Palanivelu S, Van Paepegem W, Vantomme J, Kotzakolios T, Kostopoulos V. Assessment of pressure waves generated by explosive loading, (preprint). Computer Modeling in Engineering and Sciences, 2010; 65(1): 1-15. [citado 12/05/2020]. Disponible en: https://www.researchgate.net/publication/228813743_Assessment_of_Pressure_Waves_Generated_by_Explosive_Loading.

Jeon D, Kim K, Han S. Modified Equation of Shock Wave Parameters, Computation, 2017; 5(3): 1-14. [citado 12/05/2020]. Disponible en: https://www.mdpi.com/2079-3197/5/3/41.

Dadashzadeh H, Khan F, Hawboldt K, Amyotte P. An integrated approach for fire and explosión consequence modelling. Fire Saf J 2013; 61: 324-337.

Cozzani V, Tugnoli A, Salzano E. Prevention of domino effect: From active and passive strategies to inherently safer design. J Hazard Mater 2007; A139: 209-219.

Khan F, Abbasi SA, Models for Domino Effect Analysis in Chemical Process Industries, Process. Saf. Prog 1998; 17(2): 107-123.

López,Molina A, Vázquez-Román R, Sam Mannan M, Félix-Flores MG. An approach for domino effect reduction based on optimal layouts. J Loss Prev Process Ind 2013; 26: 887-894.

Bubbico R, Mazzarotta B. Analysis and comparison of calculation methods for physical explosions of compressed gases. AIDIC Conference Series, 2013; 11: 81-90 DOI: 10,3303/ACOS1311009.

Zareei H, Khosravi-Nikou M, Shariati A. (2016). A Consequence Analysis of the Explosion of Spherical Tanks Containing Liquefied Petreoleum Gas (LPG). Iranian Journal of Oil & Gas Science and Technology, 2016; 5(3): 32-44.

Finney, D,L. Probit Analysis. Cambridge University Press. Londres, 1971.

Cozzani V, Salzano B. Threshold values for domino effects caused by blast wave interaction with process equipment. J Loss Prev Process Ind 2004; 17, 437-447.

Cozzani V, Gubinelli G, Salzano B (2006). Escalation thresholds in the assessment of domino accidental events. J Hazard Mater 2006; A129: 1-21.

Norma Oficial Mexicana NOM-020-STPS-2011. Recipientes sujetos a presión, recipientes criogénicos y generadores de vapor o calderas - Funcionamiento - Condiciones de Seguridad, de 16 de diciembre del 2011. Diario Oficial de 27 de diciembre del 2011.

Norma Técnica Peruana 350,301 del 4 de febrero del 2009. Calderas industriales, Estándares de eficiencia térmica (combustible/vapor) y etiquetado, 2a Edición.

Decreto No, 10. Reglamento de Calderas y Generadores de Vapor, del 2 de marzo del 2012, publicado el 19 de octubre del 2013. [citado 12/05/2020] Disponible en: http://www.supersalud.gob. cl/observatorio/671/articles-8910_recurso_1.pdf.

Real Decreto 2060/2008, de 12 de diciembre del 2008, Reglamento de equipos a presión y sus instrucciones técnicas complementarias. B.O.E, número 31, del 5 de febrero del 2009.

Reglamento Técnico de Calderas (Proyecto) Colombia. [citado 29/12/2019]. Disponible en: http://www.mintrabajo,gov,co/ documents/20147/59676/PROYECTO+DE+RESOLUCION+POR+ LA+CUAL+SE+EXPIDE+EL+REGLAMENTO+TECNICO+DE+CALD ERAS,pdf/1a7449ce-9575-7c61-2173-499a99f3ad4a.

Decreto 26789-MTSS del16 de febrero del 1998, Reglamento de Calderas. La Gaceta No, 65 del 2 de abril del 1998.

National Board Synopsis of Boiler and Pressure Vessels Laws Rules and Regulations, 2010.

Health and Safety in Employment Act 1992 de marzo del 1996. Approved code of practice for the design, safe operation, maintenance and servicing of boilers; (rev, 2004, enmienda 2004). Occupational Safety and Health Service Department of Labour, Wellington, NZ.

Domínguez A, Schneebeli J. Argentina: Reglamentos de seguridad, Calderas y Recipientes a Presión, Calderas – Guía del Usuario en la Industria y el Comercio. 2020; Vol, 1(1), 12-14, Editorial CEACA.

Cardozo J, Regulamentação no Brasil. Calderas – Guía del Usuario en la Industria y el Comercio, 2020; Vol, 1(1), 15-17, Editorial CEACA.

Solano P, Fernández A. Reglamentación en Costa Rica sobre calderas, Calderas – Guía del Usuario en la Industria y el Comercio, 2020; Vol, 1(1), 18-21. Editorial CEACA.

Argo T, Sandstrom E, Separation Distances in NFPA Codes and Standards, The Fire Protection Research Foundation 2014. [citado 12/05/2020]. Disponible en: https://www.nfpa.org/assets/files/ aboutthecodes/59a/rfseparationdistancesnfpacodesandstandards.pdf.

Real Decreto por el que se por el que se aprueba el Reglamento de equipos a presión y sus instrucciones técnicas complementarias (BORRADOR 14 DE OCTUBRE 2019), Ministerio de Industria, Comercio y Turismo. [citado 12/05/2020]. Disponible en: https://industria.gob.es/es-es/participacion_publica/Paginas/ Proyecto-Real-Decreto-Reglamento-Equipos-a-presion.aspx.

González Ferradás E, Diaz Alonso F, Sanchez Perez J,F, Miñana Aznar A, Ruiz Gimeno J, Martinez Alonso, J.. Consequence analysis by means of characteristic curves to determine the damage to buildings from bursting spherical vessels. Process Saf Environ Prot 2008; 86: 175–181.

The articles published in this journal are subject to the following terms and conditions:

  1. The journal retains copyright of the articles published, and encourages and permits their reuse under the licence indicated at point 2.
  2. The articles are published in the online edition of the journal under licence Creative Commons Attribution-Non Commercial 4.0 (CC BY-NC 4.0). They can be copied, used, disseminated, transmitted, and publicly displayed, providing that the authorship, URL address and the Journal are cited, and that no commercial use is made of them.
  3. The authors agree with terms of licence use of the journal, with the self-archiving conditions and with the open access policy.
  4. In the event of reuse of the articles published, the existence and specifications of the terms of licence use must be mentioned, in addition to citing the authorship and original source of the their publication.

Downloads

Download data is not yet available.