Abstract
The abuse and misuse of antibiotics, such as through self-medication, treatment dropout, or cattle fattening, result in the emergence of resistant or multi-resistant pathogenic bacteria. This emergence could be due to an increased selective pressure that kills sensitive strains, new antibiotic resistances appearing at a faster rate than in nature, with higher minimum inhibitory concentrations (MICs), and than the drug discovery process. Awareness and a drop in consumption seem essential to slow down this rate of increased resistance. In this study, we asked ourselves if controlling the use of antibiotics and, hence, a drop in selective pressure are sufficient for resistant pathogenic bacteria to revert to their sensitive condition. To answer this question, we carried out a bibliographic review. The analyzed data suggests that bacteria will compensate for the fitness cost due to their high adaptive capacity. Therefore, bacterial resistance will not be reverted just by lowering the selective pressure. We suggest further research on bacterial evolution at the molecular level is necessary in order to find a solution to this problem as soon as possible.References
Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. Rev. Infect. Dis. 1940;10(4):677-8. doi:10.1038/146837a0.
Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature. 2016; 529(7586):336-43. doi:10.1038/ nature17042.
Munita J, Arias C. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016; 4(2). doi:10.1128/microbiolspec.vmbf-0016-2015.
Organización Mundial de la Salud. Resistencia a los antibióticos. [citado el 3 de marzo de 2020] Disponible en: https://www. who.int/es/news-room/fact-sheets/detail/resistencia-a-los- antibióticos.
Organización Mundial de la Salud. New report calls for urgent action to avert antimicrobial resistance crisis. WHO. [citado el 14 de abril de 2020] Disponible en: https://www.who.int/news- room/detail/29-04-2019-new-report-calls-for-urgent-action-to- avert-antimicrobial-resistance-crisis.
Bush K. Past and present perspectives on β-lactamases. Antimicrob. Agents Chemother. 2018; 62(10). doi:10.1128/AAC.01076-18.
Negi SS, Singh U, Gupta S, Khare S, Rai A, Lal S. Characterization of RPO B gene for detection of rifampicin drug resistance by SSCP and sequence analysis. Indian J. Med. Microbiol. 2009; 27(3):226-30. doi:10.4103/0255-0857.45364.
Pagès JM, James CE, Winterhalter M. The porin and the permeating antibiotic: A selective diffusion barrier in Gram-negative bacteria. Nat. Rev. Microbiol. 2008; 6(12):893-903. doi:10.1038/ nrmicro1994.
Poole K. Efflux-mediated antimicrobial resistance. J. Antimicrob. Chemother. 2005; 56(1):20-51. doi:10.1093/jac/dki171.
Piédrola Angulo G. Las bombas de expulsión activa en la resistencia a los antimicrobianos. Real Academia Nacional de Medicina de España. [citado el 23 de marzo de 2020] Disponible en: https://www.ranm.es/2001/145-sesion-del-dia-20-de-marzo- del-2001.html?start=1. Published 2001.
Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 2005; 3(9):711-21. doi:10.1038/nrmicro1234.
Lerminiaux NA, Cameron ADS. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J. Microbiol. 2019; 65(1):34-44. doi:10.1139/cjm-2018-0275.
Salvatore PP, Becerra MC, Abel zur Wiesch P, et ál. Fitness Costs of Drug Resistance Mutations in Multidrug-Resistant Mycobacterium tuberculosis: A Household-Based Case-Control Study. J. Infect. Dis. 2016; 213(1):149-55. doi:10.1093/infdis/jiv347.
Kodio O, Georges Togo AC, Sadio Sarro YD, et ál. Competitive fitness of Mycobacterium tuberculosis in vitro. Int. J. mycobacteriology. 2019; 8(3):287-91. doi:10.4103/ijmy.ijmy_97_19.
Singh A, Singh S, Singh J, Rahman M, Pathak A, Prasad KN. Survivability and fitness cost of heterogeneous vancomycin- intermediate Staphylococcus aureus. Indian J. Med. Microbiol. 2017; 35(3):415-6. doi:10.4103/ijmm.IJMM_17_311.
Praski Alzrigat L, Huseby DL, Brandis G, Hughes D. Fitness cost constrains the spectrum of marR mutations in ciprofloxacin-resistant Escherichia coli. J. Antimicrob. Chemother. 2017; 72(11):3016-24. doi:10.1093/jac/dkx270.
Colicchio R, Pagliuca C, Pastore G, et al. Fitness cost of rifampin resistance in Neisseria meningitidis: In Vitro study of mechanisms associated with rpoB H553Y mutation. Antimicrob. Agents Chemother. 2015; 59(12):7637-49. doi:10.1128/AAC.01746-15.
Rifat D, Campodónico VL, Tao J, et ál. In vitro and in vivo fitness costs associated with Mycobacterium tuberculosis RpoB mutation H526D. Future Microbiol. 2017; 12(9):753-65. doi:10.2217/fmb-2017-0022.
Suzuki S, Horinouchi T, Furusawa C. Phenotypic changes associated with the fitness cost in antibiotic resistant Escherichia coli strains. Mol. Biosyst. 2016; 12(2):414-20. doi:10.1039/c5mb00590f.
Pourbaix A, Guérin F, de Lastours V, et ál. Biological cost of fosfomycin resistance in Escherichia coli in a murine model of urinary tract infection. Int. J. Med. Microbiol. 2017; 307(8):452-9. doi:10.1016/j.ijmm.2017.09.019.
Stepanyan K, Wenseleers T, Duéñez-Guzmán EA, et ál. Fitness trade-offs explain low levels of persister cells in the opportunistic pathogen Pseudomonas aeruginosa. Mol. Ecol. 2015; 24(7):1572-83. doi:10.1111/mec.13127.
Guo W, He Q, Wang Z, et al. Influence of antimicrobial consumption on gram-negative bacteria in inpatients receiving antimicrobial resistance therapy from 2008-2013 at a tertiary hospital in Shanghai, China. Am J. Infect. Control. 2015; 43(4):358-64. doi:10.1016/j.ajic.2014.12.010.
Ledda A, Price JR, Cole K, et ál. Re-emergence of methicillin susceptibility in a resistant lineage of Staphylococcus aureus. J. Antimicrob. Chemother. 2017; 72(5):1285-8. doi:10.1093/jac/ dkw570.
Austin DJ, Kristinsson KG, Anderson RM. The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance. Proc. Natl. Acad. Sci. U S A. 1999; 96(3):1152-6. doi:10.1073/pnas.96.3.1152.
Johnson AP, Davies J, Guy R, et ál. Mandatory surveillance of methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia in England: the first 10 years. doi:10.1093/jac/dkr561.
Pacheco JO, Alvarez-Ortega C, Rico MA, Martínez JL. Metabolic compensation of fitness costs is a general outcome for antibiotic- resistant Pseudomonas aeruginosa mutants overexpressing efflux pumps. Am. Soc. Microbiol. mBio. 2017; 8(4). doi:10.1128/mBio.00500-17.
Qi Q, Toll-Riera M, Heilbron K, Preston GM, Maclean RC. The genomic basis of adaptation to the fitness cost of rifampicin resistance in pseudomonas aeruginosa. Proc. R. Soc. B. Biol. Sci. 2016; 283(1822). doi:10.1098/rspb.2015.2452.
Stefan MA, Ugur FS, Garcia GA. Source of the fitness defect in rifamycin-resistant mycobacterium tuberculosis RNA polymerase and the mechanism of compensation by mutations in the = subunit. Antimicrob. Agents Chemother. 2018; 62(6). doi:10.1128/AAC.00164-18.
Naidoo CC, Pillay M. Fitness-compensatory mutations facilitate the spread of drug-resistant F15/LAM4/KZN and F28 Mycobacterium tuberculosis strains in KwaZulu-Natal, South Africa. J. Genet. 2017; 96(4):599-612. doi:10.1007/s12041-017-0805-8.
Moura de Sousa J, Sousa A, Bourgard C, Gordo I. Potential for adaptation overrides cost of resistance. Future Microbiol. 2015;10(9):1415-31. doi:10.2217/fmb.15.61.
Moura de Sousa J, Balbontín R, Durão P, Gordo I. Multidrug-resistant bacteria compensate for the epistasis between resistances. PLoS Biol. 2017; 15(4). doi:10.1371/journal.pbio.2001741.
Lin W, Zeng J, Wan K, et ál. Reduction of the fitness cost of antibiotic resistance caused by chromosomal mutations under poor nutrient conditions. Environ. Int. 2018; 120(March):63-71. doi:10.1016/j.envint.2018.07.035.
Lopatkin AJ, Meredith HR, Srimani JK, Pfeiffer C, Durrett R, You L. Persistence and reversal of plasmid-mediated antibiotic resistance. Nat. Commun. 2017; 8(1):1689. doi:10.1038/s41467-017-01532-1.
Chevereau G, Dravecká M, Batur T, et ál. Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance. PLoS Biol. 2015; 13(11). doi:10.1371/journal.pbio.1002299.
Lofton H, Anwar N, Rhen M, Andersson DI. Fitness of salmonella mutants resistant to antimicrobial peptides. J. Antimicrob. Chemother. 2015; 70(2):432-40. doi:10.1093/jac/dku423.
Nichol D, Jeavons P, Fletcher AG, et ál. Steering Evolution with Sequential Therapy to Prevent the Emergence of Bacterial Antibiotic Resistance. PLoS Comput. Biol. 2015; 11(9). doi:10.1371/ journal.pcbi.1004493.
Kriegeskorte A, Lorè NI, Bragonzi A, et ál. Thymidine-dependent Staphylococcus aureus small-colony variants are induced by trimethoprim-sulfamethoxazole (SXT) and have increased fitness during SXT challenge. Antimicrob. Agents Chemother. 2015; 59(12):7265- 72. doi:10.1128/AAC.00742-15.
Yoshida M, Reyes SG, Tsuda S, Horinouchi T, Furusawa C, Cronin L. Time- programmable drug dosing allows the manipulation, suppression and reversal of antibiotic drug resistance in vitro. Nat. Commun. 2017; 8. doi:10.1038/ncomms15589.
The articles published in this journal are subject to the following terms and conditions:
- The journal retains copyright of the articles published, and encourages and permits their reuse under the licence indicated at point 2.
- The articles are published in the online edition of the journal under licence Creative Commons Attribution-Non Commercial 4.0 (CC BY-NC 4.0). They can be copied, used, disseminated, transmitted, and publicly displayed, providing that the authorship, URL address and the Journal are cited, and that no commercial use is made of them.
- The authors agree with terms of licence use of the journal, with the self-archiving conditions and with the open access policy.
- In the event of reuse of the articles published, the existence and specifications of the terms of licence use must be mentioned, in addition to citing the authorship and original source of the their publication.