Health in neighbourhoods: impact of extreme temperatures
PDF (Español (España))

Keywords

heatwave
vulnerability
energy poverty

How to Cite

Sánchez-Guevara, C., López Bueno, J. A., Núñez Peiró, M., Linares Gil, C., & Sanz Fernández, A. (2021). Health in neighbourhoods: impact of extreme temperatures. Spanish Journal of Environmental Health, 21(1), 65–73. Retrieved from https://ojs.diffundit.com/index.php/rsa/article/view/1092

Abstract

Projections about climate change forecast an increase in the number and intensity of heat waves. In Spain daily maximum temperatures are projected to increase by 0.4 °C per decade in the 2021-2050 period and by 0.6 °C per decade in the 2051-2100 period in a maximum emissions scenario (RCP8.5). This increase in temperatures may lead to significant healthcare costs, on top of current mortality and morbidity increases, as a result of the population’s exposure to temperature extremes.

The built urban environment and buildings proper play a key role in the population’s degree of exposure to these temperature extremes. The high density of cities and the absence of green spaces are modifiers of urban climate. In large cities this is manifested in a high intensity of the heat island phenomenon. The poor energy efficiency of much of the housing pool and high energy prices compound this problem, especially in energy poverty situations where households are unable to keep their homes at temperatures suitable for optimal health conditions.

Interventions should be made in neighborhoods with health in mind, the clear objective of which should be reducing the population’s exposure to extreme temperatures and the associated health risks. It is necessary to combine actions on the public space aimed at improving the urban microclimate with measures intended to improve the thermal comfort conditions in dwellings.

PDF (Español (España))

References

Díaz J, López-Bueno JA, Sáez M, Mirón IJ, Luna MY, Sánchez- Martínez G, et al. Will there be cold-related mortality in Spain over the 2021–2050 and 2051–2100 time horizons despite the increase in temperatures as a consequence of climate change? Environ Res 2019; 176:108557.

Cramer W, Guiot J, Marini K, Azzopardi B, Balzan M V, Cherif S, et al. Climate and Environmental Change in the Mediterranean Basin- Current Situation and Risks for the Future First Mediterranean Assessment Report (MAR1) Text as approved during Plenary Session of MedECC Stakeholders on September 22, 2020 Drafting Authors. 2020.

Díaz J, Sáez M, Carmona R, Mirón IJ, Barceló MA, Luna MY, et al. Mortality attributable to high temperatures over the 2021–2050 and 2051–2100 time horizons in Spain: Adaptation and economic estimate. Environ Res. 2019; 172:475–85.

Linares C, Díaz J, Negev M, Martínez GS, Debono R, Paz S. Impacts of climate change on the public health of the Mediterranean Basin population - Current situation, projections, preparedness and adaptation. Environ Res 2020; 182:109107.

Martinez GS, Linares C, Ayuso A, Kendrovski V, Boeckmann M, Diaz J. Heat-health action plans in Europe: Challenges ahead and how to tackle them. Environ Res 2019; 176:108548.

López-Bueno JA, Díaz J, Sánchez-Guevara C, Sánchez-Martínez G, Franco M, Gullón P, et al. The impact of heat waves on daily mortality in districts in Madrid: The effect of sociodemographic factors. Environ Res. 2020; 190:109993.

Svensson MK, Eliasson I. Diurnal air temperatures in built-up areas in relation to urban planning. Landsc Urban Plan. 2002; 61(1):37–54.

Sánchez-Guevara C, Fernández AS, Aja AH. Income, energy expenditure and housing in Madrid: Retrofitting policy implications. Build Res Inf. 2015; 43(6):737–49.

Sanz Fernández A, Gómez Muñoz G, Sánchez-Guevara Sánchez C, Núñez Peiró M. Estudio técnico sobre pobreza energética en la ciudad de Madrid. Madrid; 2016.

Linares C, Diaz J, Tobías A, Carmona R, Mirón IJ. Impact of heat and cold waves on circulatory-cause and respiratory-cause mortality in Spain: 1975–2008. Stoch Environ Res Risk Assess. 2015; 29(8):2037–46.

Åström DO, Tornevi A, Ebi KL, Rocklöv J, Forsberg B. Evolution of Minimum Mortality Temperature in Stockholm, Sweden, 1901– 2009. Environ Health Perspect. 2016; 124(6):740–4.

Díaz J, Carmona R, Mirón IJ, Ortiz C, León I, Linares C. Geographical variation in relative risks associated with heat: Update of Spain’s Heat Wave Prevention Plan. Environ Int 2015; 85:273–83.

Carmona R, Díaz J, Mirón IJ, Ortíz C, León I, Linares C. Geographical variation in relative risks associated with cold waves in Spain: The need for a cold wave prevention plan. Environ Int 2016; 88:103–11.

Díaz J, Linares C. Temperaturas extremadamente elevadas y su impacto sobre la mortalidad diaria de acuerdo a diferentes grupos de edad. Gac Sanit. 2008; 22(2):115–19.

Linares C, Martinez-Martin P, Rodríguez-Blázquez C, Forjaz MJ, Carmona R, Díaz J. Effect of heat waves on morbidity and mortality due to Parkinson’s disease in Madrid: A time-series analysis. Environ Int. 2016; 89:1–6.

Arroyo V, Díaz J, Ortiz C, Carmona R, Sáez M, Linares C. Short term effect of air pollution, noise and heat waves on preterm births in Madrid (Spain). Environ Res 2016; 145:162–8.

Sánchez-Guevara Sánchez C, Sanz Fernández A, Núñez Peiró M, Gómez Muñoz G. Feminisation of energy poverty in the city of Madrid. Energy Build. 2020; 223: 110157.

Kampa M, Castanas E. Human health effects of air pollution. Environ Pollut. 2008; 151(2):362–7.

Tobías A, Recio A, Díaz J, Linares C. Health impact assessment of traffic noise in Madrid (Spain). Environ Res 2015; 137:136–40.

López Gómez A. El clima de las ciudades. Arbor. 1985; 121(474):13–32.

Oke TR, Mills G, Christen A, Voogt JA. Urban climates. Cambridge University Press; 2017. 509 pp.

Deilami K, Kamruzzaman M, Liu Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int J Appl Earth Obs Geoinf 2018; 67:30–42.

Almendros MÁ, López Gómez A. La isla de calor en Madrid y las situaciones sinópticas. Estud Geográficos. 1995; 56(219):207–21.

Arnds D, Boehner J, Bechtel B. Spatio-temporal variance and meteorological drivers of the urban heat island in a European city. Theor Appl Climatol. 2017; 128(1–2):43–61.

Chandler TJ. Urban Climatology and its relevance to urban design. World Meteorological Organization; 1976. 61 pp.

Kleerekoper L, van Esch M, Salcedo TB. How to make a city climate- proof, addressing the urban heat island effect. Resour Conserv Recycl. 2012; 64:30–8.

López Gómez A, López Gómez J, Fernández García F, Arroyo Ilera F. El Clima urbano de Madrid: La isla de calor. Madrid: CSIC; 1988. 166 p.

Núñez Peiró M, Sánchez-Guevara Sánchez C, Neila González FJ. Update of the urban heat Island of Madrid and its influence on the building’s energy simulation. En: Sustainable Development and Renovation in Architecture, Urbanism and Engineering. Springer, Cham, 2017. pp. 339–50.

Sánchez-Guevara C, Núñez Peiró M, Taylor J, Mavrogianni A, Neila González FJ. Assessing population vulnerability towards summer energy poverty: Case studies of Madrid and London. Energy Build 2019; 190:132–43.

European Commission. EU Energy Poverty Observatory (EPOV). 2018.

Healy JD. Housing, Fuel Poverty and Health. A Pan-European Analysis. Reino Unido: London: Routledge; 2004. 250 pp.

The Eurowinter Group. Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. Lancet. 1997; 349(9062):1341–6.

Wilkinson P, Pattenden S, Armstrong B, Fletcher A, Kovats RS, Mangtani P, et al. Vulnerability to winter mortality in elderly people in Britain: population based study. BMJ 2004; 329(7467):647.

Sánchez-Guevara C, Sanz Fernández A, Hernández Aja A. Income, energy expenditure and housing in Madrid: retrofitting policy implications. Build Res Inf 2015; 43(6):737–49.

Ministerio para la Transición Ecológica. Estrategia nacional contra la pobreza energética 2019–2024. 2019. Disponible en: https://www.miteco.gob.es/es/prensa/estrategianacionalcontra lapobrezaenergetica2019-2024_tcm30-496282.pdf

Ministerio para la Transición Ecológica y el Reto Demográfico. Actualización de indicadores de la Estrategia Nacional contra la Pobreza Energética. 2020.

Martín-Consuegra F, Hernández-Aja A, Oteiza I, Alonso C. Distribución de la pobreza energética en la ciudad de Madrid (España). 2019; 45(135):133–52.

Sánchez-Guevara Sánchez C, Sanz Fernández A, Núñez Peiró M, Gómez Muñoz G. Energy poverty in Madrid: Data exploitation at the city and district level. Energy Policy. 2020; 144:111653.

The articles published in this journal are subject to the following terms and conditions:

  1. The journal retains copyright of the articles published, and encourages and permits their reuse under the licence indicated at point 2.
  2. The articles are published in the online edition of the journal under licence Creative Commons Attribution-Non Commercial 4.0 (CC BY-NC 4.0). They can be copied, used, disseminated, transmitted, and publicly displayed, providing that the authorship, URL address and the Journal are cited, and that no commercial use is made of them.
  3. The authors agree with terms of licence use of the journal, with the self-archiving conditions and with the open access policy.
  4. In the event of reuse of the articles published, the existence and specifications of the terms of licence use must be mentioned, in addition to citing the authorship and original source of the their publication.

Downloads

Download data is not yet available.