Abstract
In recent years, the use of “omics” sciences in the optimization of early, non-invasive diagnosis of different types of diseases has taken importance in the identification of chronic degenerative diseases. On the other hand, “omics” have been used to assess exposure to certain environmental pollutants and identify bacterial and viral infections, among other applications. In this regard, the main “omics” sciences are genomics, transcriptomics, proteomics, and metabolomics, which has become relevant nowadays. Thanks to the many advances in both genomics and proteomics, it has been possible to establish some elements for the potential diagnosis of chronic degenerative diseases. However, the metabolic changes that take place during the pathological processes of different diseases have not yet been fully elucidated. This is why metabolomics has emerged as a discipline with a very important application in the identification of key components in the development of some diseases.
References
Aspiazú MÁB, Bergado RS, Camejo JF, Pérez JLG, Chávez JR. Algunas reflexiones sobre el problema diagnóstico en clínica. Rev Cuba Educ Medica Super. 2009; 23(4):238-44.
Enfermedades no transmisibles. [actualizado 01/06/2018; citado 13/11/2018] Disponible en: http://www.who.int/es/news-room/ fact-sheets/detail/noncommunicable-diseases.
GBD Compare | IHME Viz Hub. [citado 12/11/2018] Disponible en: https://vizhub.healthdata.org/gbd-compare/.
Báez PC. ¿Cuál es el impacto económico de las enfermedades crónicas? Cienciamx. 2016. [citado 12/11/2018] Disponible en: http://www.cienciamx.com/index.php/ciencia/salud/11974-el- impacto-economico-de-las-enfermedades-cardiovasculares.
Objetivos y metas de desarrollo sostenible – Desarrollo Sostenible. [citado 21/11/2018] Disponible en: https://www. un.org/sustainabledevelopment/es/objetivos-de-desarrollo- sostenible/.
OMS. Objetivos de Desarrollo Sostenible (ODS). WHO. 2017. [citado 21/11/2018] Disponible en: http://www.who.int/topics/ sustainable-development-goals/es/.
Omics - Omics.org. [citado 19/11/2018] Disponible en: https:// omics.org/index.php/Main_Page.
Rothschild D, Weissbrod O, Barkan E, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018; 555(7695):210-5.
Metabolómica: la ciencia ómica más multidisciplinaria. Revista de la Sociedad Española de Bioquímia y Biología Molecular. SEEBM. [citado 21/11/2018] Disponible en: https://www.sebbm. es/revista/articulo.php?id=42&url=metabolomica-la-ciencia- omica-mas-multidisciplinaria.
Patti GJ, Yanes O, Siuzdak G. Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol. 2012; 13(4):263-9. doi:10.1038/nrm3314.
Su LJ, Fiehn O, Maruvada P, et al. The Use of Metabolomics in Population-Based Research. Adv Nutr An Int Rev J. 2014; 5(6):785-8.
Dunn WB, Ellis DI. Metabolomics: Current analytical platforms and methodologies. TrAC - Trends Anal Chem. 2005; 24(4):285-94.
Wang JH, Byun J, Pennathur S. Analytical approaches to metabolomics and applications to systems biology. Semin Nephrol. 2010; 30(5):500-11.
Sas KM, Karnovsky A, Michailidis G, Pennathur S. Metabolomics and diabetes: Analytical and computational approaches. Diabetes. 2015; 64(3):718-32.
Metabolómica: la ciencia ómica más multidisciplinaria. Revista de la Sociedad Española de Bioquímia y Biología Molecular. SEEBM. [citado 22/11/2018] Disponible en: https://www.sebbm. es/revista/articulo.php?id=42&url=metabolomica-la-ciencia- omica-mas-multidisciplinaria.
Thomas J. Wang, Martin G. Larson, Ramachandran S. Vasan, et al. REG. Metabolite profiles and diabetes. Nat Med. 2011; 17(4):448-53.
Floegel A, Stefan N, Yu Z, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013; 62(2):639-48. doi:10.2337/db12-0495.
General H, Gonz MG. Nefropatía diabética. 2002; 5.
Van der Kloet FM, Tempels FWA, Ismail N, et al. Discovery of early-stage biomarkers for diabetic kidney disease using ms- based metabolomics (FinnDiane study). Metabolomics. 2012; 8(1):109-19.
Sharma K, Karl B, Mathew A V, et al. Metabolomics Reveals Signature of Mitochondrial Dysfunction in Diabetic Kidney Disease. J Am Soc Nephrol. 2013; 24(11):1901-12. doi:10.1681/ ASN.2013020126.
Pena MJ, Lambers Heerspink HJ, Hellemons ME, et al. Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with Type 2 diabetes mellitus. Diabet Med. 2014; 31(9):1138-47.
Yang Q, Sun J, Chen YQ. Multi-dimensional, comprehensive sample extraction combined with LC-GC/MS analysis for complex biological samples: application in the metabolomics study of acute pancreatitis. RSC Adv. 2016; 6(31):25837-49.
Sakai A, Nishiumi S, Shiomi Y, et al. Metabolomic analysis to discover candidate therapeutic agents against acute pancreatitis. Arch Biochem Biophys. 2012; 522(2):107-20. doi:10.1016/j.abb.2012.03.025.
Zhou X, Liu L, Lan X, et al. Polyunsaturated fatty acids metabolism, purine metabolism and inosine as potential independent diagnostic biomarkers for major depressive disorder in children and adolescents. Mol Psychiatry. 2018. doi:10.1038/s41380-018-0047.
Pan JX, Xia JJ, Deng FL, et al. Diagnosis of major depressive disorder based on changes in multiple plasma neurotransmitters: a targeted metabolomics study. Transl Psychiatry. 2018; 8(1):130.
Kawamura N, Shinoda K, Sato H, et al. Plasma metabolome analysis of patients with major depressive disorder. Psychiatry Clin Neurosci. 2018; 72(5):349-61. doi:10.1111/pcn.12638.
Sreekumar A, Poisson LM, Rajendiran TM, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009; 457(7231):910-4.
Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009; 462(7274):739-44.
Barash O, Zhang W, Halpern JM, et al. Differentiation between genetic mutations of breast cancer by breath volatolomics. Oncotarget. 2015; 6(42).
Dragonieri S, Annema JT, Schot R, et al. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer. 2009; 64(2):166-70.
Cazzola M, Segreti A, Capuano R, et al. Analysis of exhaled breath fingerprints and volatile organic compounds in COPD. COPD Res Pract. 2015; 1(1):7.
The articles published in this journal are subject to the following terms and conditions:
- The journal retains copyright of the articles published, and encourages and permits their reuse under the licence indicated at point 2.
- The articles are published in the online edition of the journal under licence Creative Commons Attribution-Non Commercial 4.0 (CC BY-NC 4.0). They can be copied, used, disseminated, transmitted, and publicly displayed, providing that the authorship, URL address and the Journal are cited, and that no commercial use is made of them.
- The authors agree with terms of licence use of the journal, with the self-archiving conditions and with the open access policy.
- In the event of reuse of the articles published, the existence and specifications of the terms of licence use must be mentioned, in addition to citing the authorship and original source of the their publication.