Resumo
A iniciativa Equidade e Acesso em Algoritmos, Mecanismos e Otimização (EAAMO) utiliza pesquisa interdisciplinar para enfrentar desafios globais, enfatizando soluções tecnológicas que beneficiem comunidades marginalizadas. A iniciativa EAAMO é composta por dois componentes principais: EAAMO Bridges – uma rede de pesquisadores e profissionais – e a Conferência ACM EAAMO, que promove a aplicação da pesquisa na prática. Este artigo destaca o trabalho da EAAMO em cinco áreas-chave de pesquisa: equidade algorítmica e mitigação de vieses; acesso à educação; serviços de saúde e serviços sociais; governança e políticas; e alocação e otimização de recursos. Ao destacar o trabalho nessas áreas, esperamos inspirar mais contribuições, especialmente da região latino-americana, assim como aumentar a participação nas Conferências EAAMO2.
Referências
Abebe R, Goldner K. Mechanism design for social good. AI Matters. 2018; 4(3):27-34.
Završnik A. Algorithmic justice: Algorithms and big data in criminal justice settings. Eur J Criminol. 2021; 18(5):623-42.
Ferdous M, Debnath J, Chakraborty NR. Machine learning algorithms in healthcare: A literature survey. In: Proceedings of 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). Kharagpur, India: IEEE; 2020.
Manogaran G, Lopez D. A survey of big data architectures and machine learning algorithms in healthcare. Int. J. Biomed. Eng. Technol. 2017; 25(2-4):182-211.
Mitchell S, Potash E, Barocas S, D’Amour A, Lum K. Algorithmic fairness: Choices, assumptions, and definitions. Annu. Rev. Stat. Its Appl. 2021; 8:141-63.
Kleinberg J, Ludwig J, Mullainathan S, Rambachan A. Algorithmic fairness. In: AEA Papers and Proceedings. Nashville, TN. American Economic Association; 2018.
Baker RS, Hawn A. Algorithmic bias in education. Int. J. Artif. Intell. Educ. 2022; 1-41.
Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019; 366(6464):447-53.
Halevy M, Harris C, Bruckman A, Yang D, Howard A. Mitigating racial biases in toxic language detection with an equitybased ensemble framework. In: Proceedings of the 1st ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Virtual: ACM; 2021.
Wang Y, Singh L. Mitigating demographic bias of machine learning models on social media. In: Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Boston, United States: ACM; 2023.
Grgić-Hlača N, Lima G, Weller A, Redmiles EM. Dimensions of diversity in human perceptions of algorithmic fairness. In: Proceedings of the 2nd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Fairfax, United States: ACM; 2022.
Vecchione B, Levy K, Barocas S. Algorithmic auditing and social justice: Lessons from the history of audit studies. In: Proceedings of the 1st ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Virtual: ACM; 2021.
Chohlas-Wood A, Coots M, Zhu H, Brunskill E, Goel S. Learning to be fair: A consequentialist approach to equitable decisionmaking. [actualizado en 2024, citado 3 de septiembre de 2024] Disponible en: https://arxiv.org/abs/2109.08792.
Saha D, Schumann C, McElfresh D, Dickerson J, Mazurek M, Tschantz M. Measuring non-expert comprehension of machine learning fairness metrics. In: Proceedings of the International Conference on Machine Learning. Addis Ababa, Ethiopia: PMLR; 2020.
Black E, Naidu R, Ghani R, Rodolfa K, Ho D, Heidari H. Toward operationalizing pipeline-aware ML fairness: A research agenda for developing practical guidelines and tools. In: Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Boston, United States: ACM; 2023.
Singh S, Shah B, Kanich C, Kash IA. Fair decision-making for food inspections. In: Proceedings of the 2nd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Fairfax, United States: ACM; 2022.
Garg N, Li H, Monachou F. Dropping standardized testing for admissions trades off information and access. [actualizado en 2023, citado 3 de septiembre de 2024] Disponible en: https://arxiv.org/abs/2010.04396.
Larroucau T, Rios I. Dynamic college admissions and the determinants of students’ college retention. In: Proceedings of the 1st ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Virtual: ACM; 2021.
Bleemer Z. Top Percent Policies and the Return to Postsecondary Selectivity. [actualizado in 2024; citado citado 3 de septiembre de 2024] Disponible en: https://zacharybleemer.com/wpcontent/uploads/Working-Papers/ELC_Paper.pdf.
Calsamiglia C, Miralles A. Catchment Areas, Stratification, And Access To Better Schools. Int. Econ. Rev. 2023; 64(4):1469-92.
Allman M, Ashlagi I, Lo I, Love J, Mentzer K, Ruiz-Setz L, O’Connell H. Designing school choice for diversity in the San Francisco Unified School District. In: Proceedings of the 23rd ACM Conference on Economics and Computation. Boulder, United States: ACM; 2022.
Cerrone C, Hermstrüwer Y, Kesten O. School choice with consent: an experiment. Econ. J. 2024; uead120.
Gillani N, Beeferman D, Vega-Pourheydarian C, Overney C, Van Hentenryck P, Roy D. Redrawing attendance boundaries to promote racial and ethnic diversity in elementary schools. Educ. Res. 2023; 52(6):348-64.
Pei J, Wang ZH, Li J. 30 million Canvas grading records reveal widespread sequential bias and system-induced surname initial disparity. In: Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Boston, United States: ACM; 2023.
Feffer M, Martelaro N, Heidari H. The AI Incident Database as an educational tool to raise awareness of AI harms: A classroom exploration of efficacy, limitations, & future improvements. In: Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Boston, United States: ACM; 2023
Wilder B, Onasch-Vera L, Diguiseppi G, Petering R, Hill C, Yadav A, Rice E, Tambe M. Clinical trial of an AI-augmented intervention for HIV prevention in youth experiencing homelessness. In: Proceedings of the AAAI Conference on Artificial Intelligence. Virtual: AAAI; 2021.
Dunstan J, Villena F, Hoyos JP, Riquelme V, Royer M, Ramírez H, Peypouquet J. Predicting no-show appointments in a pediatric hospital in Chile using machine learning. Health Care Manag. Sci. 2023; 26(2):313-29.
Kaya YB, Maass KL, Dimas GL, Konrad R, Trapp AC, Dank M. Improving access to housing and supportive services for runaway and homeless youth: Reducing vulnerability to human trafficking in New York City. IISE Trans. 2024; 56(3):296-310.
Killian JA, Biswas A, Xu L, Verma S, Nair V, Taneja A, Hegde A, Madhiwalla N, Diaz PR, Johnson-Yu S, Tambe M. Robust planning over restless groups: engagement interventions for a largescale maternal telehealth program. In: Proceedings of the AAAI Conference on Artificial Intelligence. Washington D.C., United States: AAAI; 2023.
She Z, Ayer T, Gokpinar B, Hughes D. Reverse Cross Subsidization in Healthcare Capitation Programs: Evidence from Medicare Advantage. [actualizado en 2023, citado 3 de septiembre de 2024] Disponible en: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3856673.
Ruiz-Correa S, López-Revilla R, Díaz-Barriga F, Marmolejo-Cossío F, Robledo-Valero VC, Hernández-Huérfano EE, Álvarez-Rivera L, Rangel-Martínez ML, Lutzow-Steiner MÁ, Ortiz-Vázquez LA, Mendoza-Lara AR. Health Sentinel: A mobile crowdsourcing platform for self-reported surveys provides early detection of COVID-19 clusters in San Luis Potosí, México. Int. J. Med. Inform. 2021; 153:104508.
Buell RW, Ramdas K, Sönmez N, Srinivasan K, Venkatesh R. Shared service delivery can increase client engagement: A study of shared medical appointments. Manuf. Serv. Oper. Manag. 2024; 26(1):154-66.
Johnston CM, Vossler P, Blessenohl S, Vayanos P. Deploying a robust active preference elicitation algorithm: Experiment design, interface, and evaluation for COVID-19 patient prioritization. [actualizado in 2023, citado 3 de septiembre de 2024] Disponible en: https://arxiv.org/abs/2306.04061.
Raman V, Vera C, Manna CJ. Bias, consistency, and partisanship in US asylum cases: A machine learning analysis of extraneous factors in immigration court decisions. In: Proceedings of the 2nd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Fairfax, United States: ACM; 2022.
Jegede T, Gerchick MK, Mathai AS, Horowitz A. Challenge accepted? A critique of the 2021 National Institute of Justice recidivism forecasting challenge. In: Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Boston, United States: ACM; 2023.
Cembrano J, Correa J, Diaz G, Verdugo V. Proportional apportionment: A case study from the Chilean constitutional convention. In: Proceedings of the 1st ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Virtual: ACM; 2021.
Deshpande SP, Ludden IG, Jacobson SH. Votemandering: Strategies and fairness in political redistricting. [actualizado en 2023, citado 3 de septiembre de 2024] Disponible en: https://arxiv.org/abs/2308.07414.
Akbar P. Public transit access and income segregation. [actualizado in 2022, citado on 3 September 2024] Disponible en: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4210056.
Gelauff LL, Goel A. Opinion change or differential turnout: Austin’s budget feedback exercise and the police department. In: Proceedings of the 2nd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Fairfax, United States: ACM; 2022.
Ahn Y, Beigel E, Braun N, Griffin C, Linardi S, Mickles B, Rial E. Improving citizen-initiated police reform efforts through interactive design: A case study in Allegheny County. In: Proceedings of the 2nd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Fairfax, United States: ACM; 2022.
Corbett E, Denton E, Erete S. Power and public participation in AI. In: Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Boston, United States: ACM; 2023.
Sloane M, Moss E, Awomolo O, Forlano L. Participation is not a design fix for machine learning. In: Proceedings of the 2nd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Fairfax, United States: ACM; 2022.
Revel M, Halpern D, Berinsky A, Jadbabaie A. Liquid democracy in practice: An empirical analysis of its epistemic performance. In: ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Fairfax, United States: ACM;
Kasy M, Teytelboym A. Adaptive combinatorial allocation. [actualizado in 2020; citado on 3 September 2024] Disponible en: https://arxiv.org/abs/2011.02330.
Levi R, Paulson E, Perakis G. Optimal interventions for increasing healthy food consumption among low-income households. [actualizado en 2020; citado 3 de septiembre de 2024] Disponible en: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3486292.
Aouad A, Ramdas K, Sungu A. Digitized Indian micro-grocery transactions reveal that grain subsidies reduce junk food buying by low-income shoppers. [actualizado en 2024; citado 3 de septiembre de 2024] Disponible en: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4847728.
Lock E, Marmolejo-Cossío FJ, Jonnerby J, Rajgopal N, Guzmán-Gutiérrez HA, Benavides-Vázquez LA, Tello-Ayala JR, Lazos P. Optimal testing and containment strategies for universities in Mexico amid COVID-19. In: Proceedings of the 1st ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Virtual: ACM; 2021.
Jonnerby J, Lazos P, Lock E, Marmolejo-Cossío F, Ramsey CB, Shukla M, Sridhar D. Maximising the benefits of an acutely limited number of COVID-19 tests. [actualizado in 2020, citado on 3 September 2024] Disponible en: https://arxiv.org/abs/2004.13650.
Finster S, Amador MG, Lock E, Marmolejo-Cossío F, Micha E, Procaccia AD. Welfare-maximizing pooled testing. [actualizado in 2023, citado on 3 September 2024] Disponible en: https://arxiv.org/abs/2206.10660.
Huang W, Deshusses EJ, Pazour JA, Telliel YD, Stanlick SE, Trapp AC. Empowering collective impact: Introducing SWAP for resource sharing. In: Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Boston, United States: ACM; 2023.
Andrews K, Ohannessian M, Berger-Wolf T. Modeling access differences to reduce disparity in resource allocation. In: Proceedings of the 2nd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Fairfax, United States: ACM; 2022.
Esposito Acosta BN, Sautmann A. Adaptive Experiments for Policy Choice: Phone Calls for Home Reading in Kenya. The World Bank; 2022.
McElfresh D, Curry M, Sandholm T, Dickerson J. Improving policyconstrained kidney exchange via pre-screening. In: Proceedings of Advances in Neural Information Processing Systems. Virtual: NeurIPS; 2020.
Este trabalho encontra-se publicado com a Creative Commons Atribuição-NãoComercial 4.0.
Direitos de Autor (c) 2024 Revista Espanhola de Saúde Ambiental