Uso de la metabolómica ecológica como herramienta complementaria para el estudio de la salud integral de los ecosistemas

Antonio de Jesús Lara-Del Río, Rogelio Flores-Ramírez, Fernando Díaz-Barriga, Erika García-Chávez, Guillermo Espinosa Reyes

Resumen


Los ecosistemas del planeta presentan síntomas que nos advierten claramente que los procesos de resiliencia ya no son tan eficientes; están en declive, como consecuencia de diversas actividades humanas que alteran sus componentes físicos, químicos, biológicos y sus interrelaciones. Por lo tanto, este rápido deterioro requiere de una monitorización ambiental más adecuada, intensificando la necesidad de indicadores que sean más operativos. Una de las limitantes que se presenta al momento de monitorear un ecosistema es que no se cuenta con herramientas que evidencien y detecten tempranamente cambios potencialmente dañinos en las capacidades funcionales del mismo. Sin embargo, el enfoque holístico de las llamadas ciencias ómicas (genómica, transcriptómica, metabolómica), en especial metabólomica, podría ser una importante herramienta que permita generar datos para acceder a la metacognición del concepto de vulnerabilidad ecológica y su importancia al momento de monitorear un ecosistema. La base de la metabolómica es el monitoreo de la variabilidad fenotípica en respuesta a los cambios ambientales (interacciones bióticas y abióticas), proporcionando un mejor análisis de las diferentes capacidades de respuesta conferidas por la plasticidad fenotípica de cada especie, permitiendo así, determinar el metabolismo que está involucrado en esta plasticidad. Las respuestas metabólicas de las especies son determinantes al momento de monitorear un ecosistema. Esta aproximación tiene un gran potencial para establecer no solo datos individuales de un organismo, sino redes de datos del comportamiento metabólico de poblaciones, o ecosistemas de manera espacial y temporal convirtiéndola en una herramienta muy interesante para monitorear un ecosistema.

Palabras clave


salud integral de los ecosistemas; vulnerabilidad; metabolómica ecológica

Texto completo:

PDF
PDF

Referencias


Global Biodiversity. [citado 16/05/2019] Disponible en:

https://www.cbd.int/gbo3/?pub=6667&section=6705.

What is Ecosystem Health?. [citado 16/05/2019] Disponible en:

https://www.seadocsociety.org/what-is-ecosystem-health.

Ippolito A, Sala S, Faber JH, Vighi M. Ecological vulnerability

analysis: A river basin case study. Sci Total Environ. 2010;

(18):3880–90.

Weißhuhn P, Müller F, Wiggering H. Ecosystem Vulnerability

Review: Proposal of an Interdisciplinary Ecosystem Assessment

Approach. Environ Manage. 2018; 61(6):904–15.

Burkhard B, Müller F, Lill A. Ecosystem Health Indicators. En:

Ecological Indicators, vol [2] of Encyclopedia of Ecology, 5 vols.

p. 1132–8.

Bundy, J.G., Davey, M.P. & Viant, M.R. Environmental metabolomics:

a critical review and future perspectives. Metabolomics, 2009; 5(1):3

Fiehn O. Combining genomics, metabolome analysis, and

biochemical modelling to understand metabolic networks.

Comp Funct Genomics 2001; 2(3):155–68.

Sardans J, Peñuelas J, Rivas-Ubach A. Ecological metabolomics:

overview of current developments and future challenges.

Chemoecology, 2011; 21(4):191–225.

European Bioinformatics Institute. What is metabolomics?.

[citado 22/01/2019] Disponible en: https://www.ebi.ac.uk/

training/online/course/introduction-metabolomics/whatmetabolomics.

Metabolismo Celular. [citado 16/012019]. Disponible en:

http://www.objetos.unam.mx/biologia/metabolismoCelular/

index.html.

Portal Académico del CCH. [citado 16/012019] Disponible en:

https://portalacademico.cch.unam.mx/alumno/biologia1/

unidad2/metabolismo/definicion.

Arbona Mengual V, López Climent MF, Pérez Clemente RM,

Gómez Cadenas A. La metabolómica como herramienta para

la evaluación fisiológica y nutricional en citricultura. Revista

Internacional de cítricos, 2014; 2(1)104-8.

Barbas Coral RD. La ventana de la metabolómica, vislumbrando

el panorama de sus aplicaciones. La metabolómica, 2015;

:11.

Sardans, Jordi RU Albert, Peñuelas, Josep. Ecometabolómica

| Investigación y Ciencia | Investigación y Ciencia. [citado

/032019] Disponible en: https://www.investigacionyciencia.

es/revistas/investigacion-y- ciencia/el-origen-de- l a -

multicelularidad-568/ecometabolmica-10804.

Metabolomics: Understanding Metabolism in the 21st

Century - MOOC. [citado 19/03/2019] Disponible en: https://

www.birmingham.ac.uk/postgraduate/courses/moocs/

metabolomics.aspx.

Eggen RIL, Behra R, Burkhardt-Holm P, Escher BI, Schweigert

N. Challenges in ecotoxicology. Environ Sci Technol. 2004;

(3):58A-64A.

Poulin RX, Pohnert G. Simplifying the complex: metabolomics

approaches in chemical ecology. Anal Bioanal Chem. 2019;

(1):13–9.

Matich EK, Chavez Soria NG, Aga DS, Atilla-Gokcumen GE.

Applications of metabolomics in assessing ecological effects

of emerging contaminants and pollutants on plants. J Hazard

Mater. 2019 ;373:527–35.

Simmons DBD, Benskin JP, Cosgrove JR, Duncker BP, Ekman DR,

Martyniuk CJ, et al. Omics for aquatic ecotoxicology: Control of

extraneous variability to enhance the analysis of environmental

effects. Environ Toxicol Chem. 2015; 34(8):1693–704.

Methodologies and applications in the environmental sciences.

[citado 19/03/2019] Disponible en: https://www.jstage.jst.go.jp/

article/jpestics/31/3/31_3_245/_article.

Bedia C, Cardoso P, Dalmau N, Garreta-Lara E, Gómez-Canela C,

Gorrochategui E, et al. Data Analysis for Omic Sciences: Methods

and Applications. 2018; 82:533–82.

Viant MR, Werner I, Rosenblum ES, Gantner AS, Tjeerdema RS,

Johnson ML. Correlation between heat-shock protein induction

and reduced metabolic condition in juvenile steelhead trout

(Oncorhynchus mykiss) chronically exposed to elevated

temperature. Fish Physiol Biochem. 2003; 29(2):159–71.

Cao M, Wang D, Mao Y, Kong F, Bi G, Xing Q, et al. Integrating

transcriptomics and metabolomics to characterize the regulation

of EPA biosynthesis in response to cold stress in seaweed Bangia

fuscopurpurea. PLOS ONE, 2017; 12(12):e0186986.

Gandar A, Laffaille P, Canlet C, Tremblay-Franco M, Gautier

R, Perrault A, et al. Adaptive response under multiple stress

exposure in fish: From the molecular to individual level.

Chemosphere. 2017; 188:60–72.

Serra-Compte A, Álvarez-Muñoz D, Solé M, Cáceres N, Barceló D,

Rodríguez-Mozaz S. Comprehensive study of sulfamethoxazole

effects in marine mussels: Bioconcentration, enzymatic activities

and metabolomics. Environ Res, 2019; 173:12–22.

Viant MR. Improved methods for the acquisition and

interpretation of NMR metabolomic data. Biochem Biophys Res

Commun. 2003; 310(3):943–8.

Zhang W, Tan NGJ, Fu B, Li SFY. Metallomics and NMR-based

metabolomics of Chlorella sp. reveal the synergistic role of

copper and cadmium in multi-metal toxicity and oxidative

stress. Met Integr Biometal Sci. 2015; 7(3):426–38.

Bonnefille B, Gomez E, Alali M, Rosain D, Fenet H, Courant F.

Metabolomics assessment of the effects of diclofenac exposure

on Mytilus galloprovincialis: Potential effects on osmoregulation

and reproduction. Sci Total Environ. 2018; 613–614:611–8.

Maisano M, Cappello T, Natalotto A, Vitale V, Parrino V, Giannetto

A, et al. Effects of petrochemical contamination on caged

marine mussels using a multi-biomarker approach: Histological

changes, neurotoxicity and hypoxic stress. Mar Environ Res.

; 128:114–23.

Thouvenot L, Deleu C, Berardocco S, Haury J, Thiébaut G.

Characterization of the salt stress vulnerability of three invasive

freshwater plant species using a metabolic profiling approach. J

Plant Physiol. 2015; 175:113–21.

Holzinger A, Karsten U. Desiccation stress and tolerance in

green algae: consequences for ultrastructure, physiological and

molecular mechanisms. Front Plant Sci. 2013; 4:327.

Chou L, Kenig F, Murray AE, Fritsen CH, Doran PT. Effects of legacy

metabolites from previous ecosystems on the environmental

metabolomics of the brine of Lake Vida, East Antarctica. Org

Geochem. 2018; 122:161–70.

Riedl J, Kluender C, Sans-Piché F, Heilmeier H, Altenburger R,

Schmitt-Jansen M. Spatial and temporal variation in metabolic

fingerprints of field-growing Myriophyllum spicatum. Aquat

Bot. 2012; 102:34–43.

Hou J, Wang L, Wang C, Zhang S, Liu H, Li S, et al. Toxicity and

mechanisms of action of titanium dioxide nanoparticles in

living organisms. J Environ Sci. 2019; 75:40–53.

Revel M, Châtel A, Mouneyrac C. Omics tools: New challenges

in aquatic nanotoxicology? Aquat Toxicol Amst Neth. 2017;

:72–85.

Teng M, Zhu W, Wang D, Qi S, Wang Y, Yan J, et al. Metabolomics

and transcriptomics reveal the toxicity of difenoconazole to the

early life stages of zebrafish (Danio rerio). Aquat Toxicol 2018;

:112–20.

Barboza LGA, Vieira LR, Branco V, Figueiredo N, Carvalho F,

Carvalho C, et al. Microplastics cause neurotoxicity, oxidative

damage and energy-related changes and interact with

the bioaccumulation of mercury in the European seabass,

Dicentrarchus labrax (Linnaeus, 1758). Aquat Toxicol. 2018;

:49–57.

Arukwe A, Myburgh J, Langberg HA, Adeogun AO, Braa IG,

Moeder M, et al. Developmental alterations and endocrinedisruptive

responses in farmed Nile crocodiles (Crocodylus

niloticus) exposed to contaminants from the Crocodile River,

South Africa. Aquat Toxicol. 2016; ;173:83-93.

Ortiz-Villanueva E, Jaumot J, Martínez R, Navarro-Martín L,

Piña B, Tauler R. Assessment of endocrine disruptors effects

on zebrafish (Danio rerio) embryos by untargeted LC-HRMS

metabolomic analysis. Sci Total Environ. 2018; 635:156–66.

Collins JP. Amphibian decline and extinction: what we know and

what we need to learn. Dis Aquat Organ. 2010; 92(2–3):93–9.

Gibbons JW, Scott DE, Ryan TJ, Buhlmann KA, Tuberville

TD, Metts BS, et al. The Global Decline of Reptiles, Déjà Vu

AmphibiansReptile species are declining on a global scale.

Six significant threats to reptile populations are habitat loss

and degradation, introduced invasive species, environmental

pollution, disease, unsustainable use, and global climate

change. BioScience. 2000; 50(8):653–66.

Whitfield SM, Bell KE, Philippi T, Sasa M, Bolaños F, Chaves G,

et al. Amphibian and reptile declines over 35 years at La Selva,

Costa Rica. Proc Natl Acad Sci. 2007; 104(20):8352–6.

Brühl CA, Schmidt T, Pieper S, Alscher A. Terrestrial pesticide

exposure of amphibians: An underestimated cause of global

decline? Sci Rep. 2013; 3:1135.

Hayes TB, Case P, Chui S, Chung D, Haeffele C, Haston K, et al.

Pesticide Mixtures, Endocrine Disruption, and Amphibian

Declines: Are We Underestimating the Impact?. Environ Health.

; 114(Suppl 1):40–50.

Rajaguru P, Kalpana R, Hema A, Suba S, Baskarasethupathi B,

Kumar PA, et al. Genotoxicity of some sulfur dyes on tadpoles

(Rana hexadactyla) measured using the comet assay. Environ

Mol Mutagen. 2001; 38(4):316–22.

Ralph S, Petras M, Pandrangi R, Vrzoc M. Alkaline single-cell gel

(comet) assay and genotoxicity monitoring using two species of

tadpoles. Environ Mol Mutagen. 1996; 28(2):112–20.

Denton RD, Bernot MJ. Effects of Multiple Agricultural Chemicals

on Northern Leopard Frog, Lithobates Pipiens, Larvae. Proc

Indiana Acad Sci. 2011; 120(1/2):39–44.

Attademo AM, Peltzer PM, Lajmanovich RC, Basso A, Junges C.

Tissue-Specific Variations of Esterase Activities in the Tadpoles

and Adults of Pseudis paradoxa (Anura: Hylidae). Water Air.

; 225(3):1903

Cusaac JPW, Mimbs WH, Belden JB, Smith LM, McMurry ST.

Terrestrial exposure and effects of Headline AMP® Fungicide on

amphibians. Ecotoxicology. 2015; 24(6):1341–51.

Denoël M, D’Hooghe B, Ficetola GF, Brasseur C, De Pauw E,

Thomé J-P, et al. Using sets of behavioral biomarkers to assess

short-term effects of pesticide: a study case with endosulfan on

frog tadpoles. Ecotoxicology. 2012; 21(4):1240–50.

Quaranta A, Bellantuono V, Cassano G, Lippe C. Why Amphibians

Are More Sensitive than Mammals to Xenobiotics. PLOS ONE.

; 4(11):e7699.

Carlsson G, Tydén E. Development and evaluation of gene

expression biomarkers for chemical pollution in common frog

(Rana temporaria) tadpoles. Environ Sci Pollut Res Int. 2018;

(33):33131–9.

do Amaral DF, Montalvão MF, de Oliveira Mendes B, da Costa

Araújo AP, de Lima Rodrigues AS, Malafaia G. Sub-lethal

effects induced by a mixture of different pharmaceutical drugs

in predicted environmentally relevant concentrations on

Lithobates catesbeianus (Shaw, 1802) (Anura, ranidae) tadpoles.

Environ Sci Pollut Res Int. 2019; 26(1):600–16.

do Amaral DF, Montalvão MF, de Oliveira Mendes B, da Silva

Castro AL, Malafaia G. Behavioral and mutagenic biomarkers

in tadpoles exposed to different abamectin concentrations.

Environ Sci Pollut Res Int. 2018; 25(13):12932–46.

Jones-Costa M, Franco-Belussi L, Vidal FAP, Gongora NP, Castanho

LM, Dos Santos Carvalho C, et al. Cardiac biomarkers as sensitive

tools to evaluate the impact of xenobiotics on amphibians: the

effects of anionic surfactant linear alkylbenzene sulfonate (LAS).

Ecotoxicol Environ Saf. 2018; 151:184–90.

Lambert MR, Skelly DK, Ezaz T. Sex-linked markers in the North

American green frog (Rana clamitans) developed using DArTseq

provide early insight into sex chromosome evolution. BMC

Genomics. 2016; 17(1):844.

Snyder MN, Henderson WM, Glinski DA, Purucker ST. Biomarker

analysis of American toad (Anaxyrus americanus) and grey tree

frog (Hyla versicolor) tadpoles following exposure to atrazine.

Aquat Toxicol Amst Neth. 2017; 182:184–93.

Ichu T-A, Han J, Borchers CH, Lesperance M, Helbing CC.

Metabolomic insights into system-wide coordination of

vertebrate metamorphosis. BMC Dev Biol. 2014; 14:5.

Luehr TC, Koide EM, Wang X, Han J, Borchers CH, Helbing CC.

Metabolomic insights into the effects of thyroid hormone on

Rana [Lithobates] catesbeiana metamorphosis using wholebody

Matrix Assisted Laser Desorption/Ionization-Mass

Spectrometry Imaging (MALDI-MSI). Gen Comp Endocrinol.

; 265:237–45.

Van Meter RJ, Glinski DA, Purucker ST, Henderson WM. Influence

of exposure to pesticide mixtures on the metabolomic profile in

post-metamorphic green frogs (Lithobates clamitans). Sci Total

Environ. mayo de 2018; 624:1348–59.

Cavalcante ID, Antoniazzi MM, Jared C, Pires OR, Sciani

JM, Pimenta DC. Venomics analyses of the skin secretion

of Dermatonotus muelleri: Preliminary proteomic and

metabolomic profiling. Toxicon. 2017; 130:127–35.

Duellman WE, Trueb L. Biology of Amphibians. Edición: New Ed.

Baltimore: Johns Hopkins University Press; 1994. 696 p.

Rodríguez C, Rollins-Smith L, Ibáñez R, Durant-Archibold AA,

Gutiérrez M. Toxins and pharmacologically active compounds

from species of the family Bufonidae (Amphibia, Anura). J

Ethnopharmacol. 2017; 198:235–54.

Ziarrusta H, Mijangos L, Picart-Armada S, Irazola M, Perera-

Lluna A, Usobiaga A, et al. Non-targeted metabolomics reveals

alterations in liver and plasma of gilt-head bream exposed to

oxybenzone. Chemosphere. 2018; 211:624–31.

Liu X, Liu C, Wang P, Liang Y, Zhan J, Zhou Z, et al. Distribution,

metabolism and metabolic disturbances of alpha-cypermethrin

in embryo development, chick growth and adult hens. Environ

Pollut Barking Essex 1987. 2019; 249:390–7.

Alijagic A, Gaglio D, Napodano E, Russo R, Costa C, Benada O,

et al. Titanium dioxide nanoparticles temporarily influence the

sea urchin immunological state suppressing inflammatoryrelate

gene transcription and boosting antioxidant metabolic

activity. J Hazard Mater. 2020; 384.

Shi C, Han X, Mao X, Fan C, Jin M. Metabolic profiling of liver

tissues in mice after instillation of fine particulate matter. Sci

Total Environ. 2019; 696.

Bundy JG, Sidhu JK, Rana F, Spurgeon DJ, Svendsen C, Wren

JF, et al. “Systems toxicology” approach identifies coordinated

metabolic responses to copper in a terrestrial non-model

invertebrate, the earthworm Lumbricus rubellus. BMC Biol.

; 6(1):25.

Watanabe M, Roth TL, Bauer SJ, Lane A, Romick-Rosendale LE.

Feasibility Study of NMR Based Serum Metabolomic Profiling to

Animal Health Monitoring: A Case Study on Iron Storage Disease

in Captive Sumatran Rhinoceros (Dicerorhinus sumatrensis).

PLOS ONE. 2016; 11(5):e0156318.

Broadrup RL, Mayack C, Schick SJ, Eppley EJ, White HK,

Macherone A. Honey bee (Apis mellifera) exposomes and

dysregulated metabolic pathways associated with Nosema

ceranae infection. PLoS ONE. 2019; 14(3):1–18.

Cordier S, Bonvallot N, Canlet C, Blas-Y-Estrada F, Gautier R,

Tremblay-Franco M, et al. Metabolome disruption of pregnant

rats and their offspring resulting from repeated exposure

to a pesticide mixture representative of environmental

contamination in Brittany. PLoS ONE. 2018; 13(6):1–21.

Li M-H, Ruan L-Y, Zhou J-W, Fu Y-H, Jiang L, Zhao H, et al.

Metabolic profiling of goldfish (Carassius auratis) after longterm

glyphosate-based herbicide exposure. Aquat Toxicol Amst

Neth. 2017; 188:159–69.

Dani VD, Simpson AJ, Simpson MJ. Analysis of earthworm

sublethal toxic responses to atrazine exposure using 1 H nuclear

magnetic resonance (NMR)-based metabolomics. Environ

Toxicol Chem. 2018; 37(2):473–80.

Ralston-Hooper K, Hopf A, Oh C, Zhang X, Adamec J, Sepúlveda

MS. Development of GCxGC/TOF-MS metabolomics for use in

ecotoxicological studies with invertebrates. Aquat Toxicol Amst

Neth. el 2 de junio de 2008;88(1):48–52.

Lukowicz C, Ellero-Simatos S, Régnier M, Polizzi A, Lasserre

F, Montagner A, et al. Metabolic Effects of a Chronic Dietary

Exposure to a Low-Dose Pesticide Cocktail in Mice: Sexual

Dimorphism and Role of the Constitutive Androstane Receptor.

Environ Health Perspect. 2018; 126(6):067007.

Glinski DA, Purucker ST, Meter RJV, Black MC, Henderson WM.

Endogenous and exogenous biomarker analysis in terrestrial

phase amphibians (Lithobates sphenocephala) following

dermal exposure to pesticide mixtures. Environ Chem. 2018;

(1):55–67.

Yuk J, Simpson MJ, Simpson AJ. 1-D and 2-D NMR metabolomics

of earthworm responses to sub-lethal trifluralin and endosulfan

exposure. 2011; 8(3):281–94.

Vohsen SA, Fisher CR, Baums IB. Metabolomic richness and

fingerprints of deep-sea coral species and populations.

Metabolomics. 2019. 15; 34-38.

Vastag L, Jorgensen P, Peshkin L, Wei R, Rabinowitz JD, Kirschner

MW .Remodeling of the Metabolome during Early Frog

Development . 2011; 6(2): e16881.

Melvin SD, Leusch FDL, Carroll AR. Metabolite profiles of striped

marsh frog (Limnodynastes peronii) larvae exposed to the

anti-androgenic fungicides vinclozolin and propiconazole are

consistent with altered steroidogenesis and oxidative stress.

Aquat Toxicol Amst Neth. 2018; 199:232–9.


Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2020 Revista de Salud Ambiental

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.