Resumen
La iniciativa Equidad y Acceso en Algoritmos, Mecanismos y Optimización (EAAMO) utiliza investigación interdisciplinaria para abordar desafíos globales, enfatizando soluciones tecnológicas que beneficien a comunidades marginadas. La iniciativa EAAMO está integrada por dos componentes principales: EAAMO Bridges – una red de investigadores y profesionales – y la Conferencia ACM EAAMO, que fomenta la aplicación de la investigación en la práctica. Este artículo destaca el trabajo de EAAMO en cinco áreas clave de investigación: equidad algorítmica y mitigación de sesgos; acceso a la educación; servicios de salud y servicios sociales; gobernanza y políticas; y asignación y optimización de recursos. Al destacar el trabajo en estas áreas, esperamos inspirar más contribuciones, particularmente de la región latinoamericana, así como aumentar la participación en las Conferencias EAAMO1.
Citas
Abebe R, Goldner K. Mechanism design for social good. AI Matters. 2018; 4(3):27-34.
Završnik A. Algorithmic justice: Algorithms and big data in criminal justice settings. Eur J Criminol. 2021; 18(5):623-42.
Ferdous M, Debnath J, Chakraborty NR. Machine learning algorithms in healthcare: A literature survey. In: Proceedings of 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). Kharagpur, India: IEEE; 2020.
Manogaran G, Lopez D. A survey of big data architectures and machine learning algorithms in healthcare. Int. J. Biomed. Eng. Technol. 2017; 25(2-4):182-211.
Mitchell S, Potash E, Barocas S, D’Amour A, Lum K. Algorithmic fairness: Choices, assumptions, and definitions. Annu. Rev. Stat. Its Appl. 2021; 8:141-63.
Kleinberg J, Ludwig J, Mullainathan S, Rambachan A. Algorithmic fairness. In: AEA Papers and Proceedings. Nashville, TN. American Economic Association; 2018.
Baker RS, Hawn A. Algorithmic bias in education. Int. J. Artif. Intell. Educ. 2022; 1-41.
Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019; 366(6464):447-53.
Halevy M, Harris C, Bruckman A, Yang D, Howard A. Mitigating racial biases in toxic language detection with an equitybased ensemble framework. In: Proceedings of the 1st ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Virtual: ACM; 2021.
Wang Y, Singh L. Mitigating demographic bias of machine learning models on social media. In: Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Boston, United States: ACM; 2023.
Grgić-Hlača N, Lima G, Weller A, Redmiles EM. Dimensions of diversity in human perceptions of algorithmic fairness. In: Proceedings of the 2nd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Fairfax, United States: ACM; 2022.
Vecchione B, Levy K, Barocas S. Algorithmic auditing and social justice: Lessons from the history of audit studies. In: Proceedings of the 1st ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Virtual: ACM; 2021.
Chohlas-Wood A, Coots M, Zhu H, Brunskill E, Goel S. Learning to be fair: A consequentialist approach to equitable decisionmaking. [actualizado en 2024, citado 3 de septiembre de 2024] Disponible en: https://arxiv.org/abs/2109.08792.
Saha D, Schumann C, McElfresh D, Dickerson J, Mazurek M, Tschantz M. Measuring non-expert comprehension of machine learning fairness metrics. In: Proceedings of the International Conference on Machine Learning. Addis Ababa, Ethiopia: PMLR; 2020.
Black E, Naidu R, Ghani R, Rodolfa K, Ho D, Heidari H. Toward operationalizing pipeline-aware ML fairness: A research agenda for developing practical guidelines and tools. In: Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Boston, United States: ACM; 2023.
Singh S, Shah B, Kanich C, Kash IA. Fair decision-making for food inspections. In: Proceedings of the 2nd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Fairfax, United States: ACM; 2022.
Garg N, Li H, Monachou F. Dropping standardized testing for admissions trades off information and access. [actualizado en 2023, citado 3 de septiembre de 2024] Disponible en: https://arxiv.org/abs/2010.04396.
Larroucau T, Rios I. Dynamic college admissions and the determinants of students’ college retention. In: Proceedings of the 1st ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Virtual: ACM; 2021.
Bleemer Z. Top Percent Policies and the Return to Postsecondary Selectivity. [actualizado in 2024; citado citado 3 de septiembre de 2024] Disponible en: https://zacharybleemer.com/wpcontent/uploads/Working-Papers/ELC_Paper.pdf.
Calsamiglia C, Miralles A. Catchment Areas, Stratification, And Access To Better Schools. Int. Econ. Rev. 2023; 64(4):1469-92.
Allman M, Ashlagi I, Lo I, Love J, Mentzer K, Ruiz-Setz L, O’Connell H. Designing school choice for diversity in the San Francisco Unified School District. In: Proceedings of the 23rd ACM Conference on Economics and Computation. Boulder, United States: ACM; 2022.
Cerrone C, Hermstrüwer Y, Kesten O. School choice with consent: an experiment. Econ. J. 2024; uead120.
Gillani N, Beeferman D, Vega-Pourheydarian C, Overney C, Van Hentenryck P, Roy D. Redrawing attendance boundaries to promote racial and ethnic diversity in elementary schools. Educ. Res. 2023; 52(6):348-64.
Pei J, Wang ZH, Li J. 30 million Canvas grading records reveal widespread sequential bias and system-induced surname initial disparity. In: Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Boston, United States: ACM; 2023.
Feffer M, Martelaro N, Heidari H. The AI Incident Database as an educational tool to raise awareness of AI harms: A classroom exploration of efficacy, limitations, & future improvements. In: Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Boston, United States: ACM; 2023
Wilder B, Onasch-Vera L, Diguiseppi G, Petering R, Hill C, Yadav A, Rice E, Tambe M. Clinical trial of an AI-augmented intervention for HIV prevention in youth experiencing homelessness. In: Proceedings of the AAAI Conference on Artificial Intelligence. Virtual: AAAI; 2021.
Dunstan J, Villena F, Hoyos JP, Riquelme V, Royer M, Ramírez H, Peypouquet J. Predicting no-show appointments in a pediatric hospital in Chile using machine learning. Health Care Manag. Sci. 2023; 26(2):313-29.
Kaya YB, Maass KL, Dimas GL, Konrad R, Trapp AC, Dank M. Improving access to housing and supportive services for runaway and homeless youth: Reducing vulnerability to human trafficking in New York City. IISE Trans. 2024; 56(3):296-310.
Killian JA, Biswas A, Xu L, Verma S, Nair V, Taneja A, Hegde A, Madhiwalla N, Diaz PR, Johnson-Yu S, Tambe M. Robust planning over restless groups: engagement interventions for a largescale maternal telehealth program. In: Proceedings of the AAAI Conference on Artificial Intelligence. Washington D.C., United States: AAAI; 2023.
She Z, Ayer T, Gokpinar B, Hughes D. Reverse Cross Subsidization in Healthcare Capitation Programs: Evidence from Medicare Advantage. [actualizado en 2023, citado 3 de septiembre de 2024] Disponible en: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3856673.
Ruiz-Correa S, López-Revilla R, Díaz-Barriga F, Marmolejo-Cossío F, Robledo-Valero VC, Hernández-Huérfano EE, Álvarez-Rivera L, Rangel-Martínez ML, Lutzow-Steiner MÁ, Ortiz-Vázquez LA, Mendoza-Lara AR. Health Sentinel: A mobile crowdsourcing platform for self-reported surveys provides early detection of COVID-19 clusters in San Luis Potosí, México. Int. J. Med. Inform. 2021; 153:104508.
Buell RW, Ramdas K, Sönmez N, Srinivasan K, Venkatesh R. Shared service delivery can increase client engagement: A study of shared medical appointments. Manuf. Serv. Oper. Manag. 2024; 26(1):154-66.
Johnston CM, Vossler P, Blessenohl S, Vayanos P. Deploying a robust active preference elicitation algorithm: Experiment design, interface, and evaluation for COVID-19 patient prioritization. [actualizado in 2023, citado 3 de septiembre de 2024] Disponible en: https://arxiv.org/abs/2306.04061.
Raman V, Vera C, Manna CJ. Bias, consistency, and partisanship in US asylum cases: A machine learning analysis of extraneous factors in immigration court decisions. In: Proceedings of the 2nd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Fairfax, United States: ACM; 2022.
Jegede T, Gerchick MK, Mathai AS, Horowitz A. Challenge accepted? A critique of the 2021 National Institute of Justice recidivism forecasting challenge. In: Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Boston, United States: ACM; 2023.
Cembrano J, Correa J, Diaz G, Verdugo V. Proportional apportionment: A case study from the Chilean constitutional convention. In: Proceedings of the 1st ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Virtual: ACM; 2021.
Deshpande SP, Ludden IG, Jacobson SH. Votemandering: Strategies and fairness in political redistricting. [actualizado en 2023, citado 3 de septiembre de 2024] Disponible en: https://arxiv.org/abs/2308.07414.
Akbar P. Public transit access and income segregation. [actualizado in 2022, citado on 3 September 2024] Disponible en: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4210056.
Gelauff LL, Goel A. Opinion change or differential turnout: Austin’s budget feedback exercise and the police department. In: Proceedings of the 2nd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Fairfax, United States: ACM; 2022.
Ahn Y, Beigel E, Braun N, Griffin C, Linardi S, Mickles B, Rial E. Improving citizen-initiated police reform efforts through interactive design: A case study in Allegheny County. In: Proceedings of the 2nd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Fairfax, United States: ACM; 2022.
Corbett E, Denton E, Erete S. Power and public participation in AI. In: Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Boston, United States: ACM; 2023.
Sloane M, Moss E, Awomolo O, Forlano L. Participation is not a design fix for machine learning. In: Proceedings of the 2nd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Fairfax, United States: ACM; 2022.
Revel M, Halpern D, Berinsky A, Jadbabaie A. Liquid democracy in practice: An empirical analysis of its epistemic performance. In: ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Fairfax, United States: ACM;
Kasy M, Teytelboym A. Adaptive combinatorial allocation. [actualizado in 2020; citado on 3 September 2024] Disponible en: https://arxiv.org/abs/2011.02330.
Levi R, Paulson E, Perakis G. Optimal interventions for increasing healthy food consumption among low-income households. [actualizado en 2020; citado 3 de septiembre de 2024] Disponible en: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3486292.
Aouad A, Ramdas K, Sungu A. Digitized Indian micro-grocery transactions reveal that grain subsidies reduce junk food buying by low-income shoppers. [actualizado en 2024; citado 3 de septiembre de 2024] Disponible en: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4847728.
Lock E, Marmolejo-Cossío FJ, Jonnerby J, Rajgopal N, Guzmán-Gutiérrez HA, Benavides-Vázquez LA, Tello-Ayala JR, Lazos P. Optimal testing and containment strategies for universities in Mexico amid COVID-19. In: Proceedings of the 1st ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Virtual: ACM; 2021.
Jonnerby J, Lazos P, Lock E, Marmolejo-Cossío F, Ramsey CB, Shukla M, Sridhar D. Maximising the benefits of an acutely limited number of COVID-19 tests. [actualizado in 2020, citado on 3 September 2024] Disponible en: https://arxiv.org/abs/2004.13650.
Finster S, Amador MG, Lock E, Marmolejo-Cossío F, Micha E, Procaccia AD. Welfare-maximizing pooled testing. [actualizado in 2023, citado on 3 September 2024] Disponible en: https://arxiv.org/abs/2206.10660.
Huang W, Deshusses EJ, Pazour JA, Telliel YD, Stanlick SE, Trapp AC. Empowering collective impact: Introducing SWAP for resource sharing. In: Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Boston, United States: ACM; 2023.
Andrews K, Ohannessian M, Berger-Wolf T. Modeling access differences to reduce disparity in resource allocation. In: Proceedings of the 2nd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization. Fairfax, United States: ACM; 2022.
Esposito Acosta BN, Sautmann A. Adaptive Experiments for Policy Choice: Phone Calls for Home Reading in Kenya. The World Bank; 2022.
McElfresh D, Curry M, Sandholm T, Dickerson J. Improving policyconstrained kidney exchange via pre-screening. In: Proceedings of Advances in Neural Information Processing Systems. Virtual: NeurIPS; 2020.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Derechos de autor 2024 Revista de Salud Ambiental