Abstract
Deaths caused by environmental pollution are agrowing public health issue. Most of the premature deaths related to pollution are caused by non communicable diseases such as chronic obstructive pulmonary disease, type-2 diabetes, cardiovascular disease and cancer. They are considered complex diseases because of their multicausality and the various mechanisms involved in their emergence and evolution.
Knowledge of disease-causing mechanismsis increasing and the identification of disease-associated biomarkers improving thanks to technological progress, in particular that of the technologiesthat are applied to the measurement and interpretation of molecular components—the so-called “Omics” technologies. These technologies have allowed the cellular causes of some complex diseases to be identified: genetic variants of susceptibility or protection to pollutants (Genomics), as well as changes in the DNA (Epigenomics) and their effects on the process of transcription of specific genes for repair, on metabolism or on the non-coding RNA associated with diseases (Transcriptomics). In addition, Proteomics and Metabolomics do not cease to provide information on proteins and metabolites involved in disease processes. Bioinformatics has evolved parallel to the development of omics, which has allowed the results of the measurements of hundreds of molecules to be interpreted and organized into networks that show the relationships among them.
Omics are mainly used to develop disease risk models based on population studies, but information on genomes, transcriptomes, epigenomes, microbiomes, proteomes and metabolomesis also used to decipher diseases in order to facilitate prognosis and guide patient treatment, thus contributing to personalized, precision medicine. However, their clinical application is still limited by their cost and their technical, regulatory and ethical implications.
References
Landrigan PJ, Fuller R, Hu H, et ál. Pollution and Global Health 13. -An Agenda for Prevention. Environ. Health Perspect. 2018;
(8):084501-6.
Fuller R, Rahona E, Fisher S, et ál. Pollution and non-communicable disease: time to end the neglect. Lancet Planet. Health 2018; 2(3):e96-8.
Cong X. Air pollution from industrial waste gas emissions is associated with cancer incidences in Shanghai, China. Environ. Sci. Pollut. Res. 2018; 25:13067-78.
Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017; 18:1-15.
Wyszynski DF. La epidemiología genética: disciplina científica en expansión 1. Pan Am. J. Public Health 1998; 3, 26-34.
Hu Y,An Q, Sheu K, et ál. Single Cell Multi-Omics Technology: Methodology and Application. Front. Cell Dev. Biol. 2018; 6:28.
Rothschild D, Weissbrod O, Barkan E, et ál. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018; 555:210-5.
Esparragón F, Rodríguez Pérez JC, García Bello MA. Guía práctica a los estudios de asociación genética. Consideraciones sobre su utilidad clínica. Nefrologia 2009; 29:582-8.
Moreau Y, Tranchevent LC. Computational tools for prioritizing candidate genes: Boosting disease gene discovery. Nature Reviews Genetics2012. Doi:10.1038/nrg3253.
Flores-Alfaro E, Burguete-García AI, Salazar-Martínez E. Diseños de investigación en epidemiología genética. Rev. Panam. Salud Pública 2012; 31:88-94.
Farfán MJ, Torres JP. Diagnóstico en medicina en la era de las ‘omicas’. Rev. Chil. pediatría 2018;89:163-5.
Laine JE, Bailey KA, Oishan AF, et ál. Neonatal Metabolomic Profiles Related to Prenatal Arsenic Exposure. Environ. Sci. Technol. 2017; 51:625-33.
Rojas D,Rager JE, Smeester L, et ál. Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol. Sci.2015; 143:97-106.
Rager JE, Bailey KA, Smeester L, et ál. Prenatal arsenic exposure and the epigenome: Altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. Environ. Mol. Mutagen. 2014; 55:196-208.
Bailey KA, Laine J, Rager JE, et ál. Prenatal arsenic exposure and
Drobná Z, Martin E, Kim KS, et ál. Analysis of maternal polymorphisms in arsenic (+3 oxidation state)-methyltransferase AS3MT and fetal sex in relation to arsenic metabolism and infant birth outcomes: Implications for risk analysis. Reprod. Toxicol. 2016; 61:28-38.
Aldana M. Estructura y dinámica de redes genéticas. Gac. Biomédicas; 2007. [Citado 26/11/2018] Disponible en: https:// www.fis.unam.mx/~max/MyWebPage/aldana_gaceta- biomedicas_2007.pdf.
Zheng F, Wei L, Zhao L, Ni F. Pathway Network Analysis of Complex Diseases Based on Multiple Biological Networks. Biomed Res. Int. 2018; 18:1-12.
Mitra AK, Clarke K. Viral obesity: Fact or fiction? Obesity Reviews; 2010. Doi:10.1111/j.1467-789X.2009.00677.x.
Cowen L, Ideker T, Raphael BJ, Sharan R. Network propagation: A universal amplifier of genetic associations. Nature Reviews Genetics; 2017. Doi:10.1038/nrg.2017.38.
Ogura Y, Bonen DK, Inohara N, et ál. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001; 411:603-6. Doi:10.1038/35079114.
Huang H, Fang M, Jostins L, et ál. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature 2017; 547:173-8. Doi:10.1038/nature22969.
Liu JZ, Mcrae A, Nyholt DR, et ál. A versatile gene-based test for genome-wide association studies. Am. J. Hum. Genet. 2010; 87:139-45. Doi:10.1016/j.ajhg.2010.06.009.
Neale BM, Kou Y, Liu L, et ál. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 2012; 485: 242-5. Doi:10.1038/nature11011.
Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature 2009; 458:719-24. Doi:10.1038/nature07943.
Nakagawa H, Fujita M. Whole genome sequencing analysis for cancer genomics and precision medicine. Cancer Sci. 2018;
:513-22.
Stunnenberg HG, Hubner NC. Genomics meets proteomics:
Identifying the culprits in disease. Hum. Genet. 2014; 133: 689-700.
Moreno V, Gemignani F, Landi S, et ál. Polymorphisms in genes of nucleotide and base excision repair: Risk and prognosis of colorectal cancer. Clin. Cancer Res. 2006; 12:2101-8.
Zienolddiny S, Campa D, Lind H, et ál. Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis 2006; 27:560-7.
Pérez-Morales R, Mendez-Ramírez I, Castro Hernández C, et ál. Polymorphisms associated with the risk of lung cancer in a healthy Mexican Mestizo population: Application of the additive model for cancer. Genet. Mol. Biol. 2011; 34:546–52.
Ahluwalia M, Kaur A. Modulatory role of GSTT1 and GSTM1 in Punjabi agricultural workers exposed to pesticides. Environ. Sci. Pollut. Res. 2018; 25:11981-6.
Budnik LT, Adam B, Albin M, et ál. Diagnosis, monitoring and prevention of exposure-related non-communicable diseases in the living and working environment: DiMoPEx-project is designed to determine the impacts of environmental exposure on human health. J. Occup. Med. Toxicol. 2018; 13:1–22.
Gao Y, Zhang Y, Kamijima M,et ál. Quantitative assessments of indoor air pollution and the risk of childhood acute leukemia in Shanghai. Environ. Pollut. 2014;187:81-9.
Lien SA, Young L, Gau BS, Shiao SP. Meta-prediction of MTHFR gene polymorphism-mutations, air pollution, and risks of leukemia among world populations. Oncotarget 2017; 8:4387-98.
Jiménez-Morales S, Hidalgo-Miranda A, Ramírez-Bello J. Leucemia linfoblástica aguda infantil: una aproximación genómica. Bol. Med. Hosp. Infant. Mex. 2017; 74:13-26.
Lalonde E, Wertheim G, Li MM. Clinical Impact of Genomic Information in Pediatric Leukemia. Front. Pediatr. 2017; 5:1-8.
Kassogue Y, Dehbi H, Quachouch M, et ál. Association of glutathione S-transferase (GSTM1 and GSTT1) genes with chronic myeloid leukemia. Springer Plus 2015; 4 (210):1-5.
Pongstaporn W, Pakakasama S, Chaksangchaichote P, et ál. MDR1 C3435T and C1236T polymorphisms: Association with high-risk childhood acute lymphoblastic leukemia. Asian Pacific J. Cancer Prev. 2015; 16:2839-43.
Megías-Vericat JE, Rojas L, Herrero MJ, et ál. Influence of ABCB1 polymorphisms upon the effectiveness of standard treatment for acute myeloid leukemia: A systematic review and meta-analysis of observational studies. Pharmacogenomics J. 2015; 15:109-18.
Huang B, Jiang C, Zhang R. Epigenetics: The language of the cell? Epigenomics 2014; 6:73-88.
Feinberg AP. The Key Role of Epigenetics in Human Disease Prevention and Mitigation. N. Engl. J. Med. 2018; 378:1323-34.
Li J, Zhang X, He Z, et ál. MGMT hypomethylation is associated with DNA damage in workers exposed to low-dose benzene. Biomarkers 2017; 22:470-5.
Jiménez-Garza O, Guo L, Byun HM, et ál. Promoter methylation status in genes related with inflammation, nitrosative stress and xenobiotic metabolism in low-level benzene exposure: Searching for biomarkers of oncogenesis. Food Chem. Toxicol. 2017; 109:669-76.
Jelinek J, Gharibyan V, Estecio MR, et ál. Aberrant DNA methylation
is associated with disease progression, resistance to imatinib and shortened survival in chronic myelogenous leukemia. PLoS One 2011; 6:1-9.
Jiménez-Garza O,Guo L, Byun HM, et ál. Aberrant promoter methylation in genes related to hematopoietic malignancy in workers exposed to a VOC mixture. Toxicol. Appl. Pharmacol. 2018; 339:65–72.
Tebani A, Afonso C, Marret S, Bekri S. Omics-based strategies in precision medicine: Toward a paradigm shift in inborn errors of metabolism investigations. Int. J. Mol. Sci. 2016; 17. Doi:10.3390/ ijms17091555.
McHale CM, Zhang L, lan Q, et ál. Changes in the peripheral blood transcriptome associated with occupational benzene exposure identified by cross-comparison on two microarray platforms. Genomics 2009; 93:343-49. Doi:10.1016/j.ygeno.2008.12.006.
Thomas R, Hubbard AE, McHale CM, et ál. Characterization of changes in gene expression and biochemical pathways at low levels of benzene exposure. PLoS One 2014; 9(5):e91828.
Bai W, Yang J, Yang G, et ál. Long non-coding RNA NR_045623 and NR_028291 involved in benzene hematotoxicity in occupationally benzene-exposed workers. Exp. Mol. Pathol. 2014; 96:354-60.
Kanagal-Shamanna R, Zhao W, Vadhan-Raj S, et ál. Over-expression of CYP2E1 mRNA and protein: implications of xenobiotic induced damage in patients with de novo acute myeloid leukemia with inv(16)(p13.1q22); CBFβ-MYH11. Int. J. Environ. Res. Public Health 2012; 9(8):2788-800. Doi:10.3390/ijerph9082788.
Beane J, Vick J, Schembri F, et ál. Characterizing the Impact of Smoking and Lung Cancer on the Airway Transcriptome Using RNA-Seq. Cancer Prev. Res. 2011;4(6):803-17.
Erkizan HV, Johnson K, Ghimbovschi S, et ál. African-American esophageal squamous cell carcinoma expression profile reveals dysregulation of stress response and detox networks. BMC Cancer 2017; 17:1-13.
Lu M, Zhan X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J. 2018; 9:77-102.
Jimenez-Luna C, Torres C, Ortiz R, et ál. Proteomic biomarkers in body fluids associated with pancreatic cancer. Oncotarget2018; 9(23):16573-87. Doi:10.18632/oncotarget. 24654.
Rai V, Mukherjee R, Ghosh AK, Routray A, Chakraborty C. “Omics” in oral cancer: New approaches for biomarker discovery. Arch. Oral Biol. 2018; 87:15-34.
Skalnikova HK, Cizkova J, Cervenka J, Vodicka P. Advances in Proteomic Techniques for Cytokine Analysis: Focus on Melanoma Research. International journal of molecular sciences 2017. Doi:10.3390/ijms18122697.
Wu C, Li W. Genomics and pharmacogenomics of pediatric acute lymphoblastic leukemia. Crit. Rev. Oncol. Hematol. 2018; 126:100-
Chung YL, Wu ML. The Role of Promyelocytic Leukemia Protein in Steatosis-Associated Hepatic Tumors Related to Chronic Hepatitis B virus Infection. Transl. Oncol. 2018; 11: 743-54.
Maier RM, Visscher PM, Robinson MR, Wray NR. Embracing polygenicity: A review of methods and tools for psychiatric genetics research. Psychological Medicine. 2018; 48(7):1055-67. Doi:10.1017/S0033291717002318.
Khera AV, Emdin CA, Drake I, et ál. Genetic Risk, Adherence to a Healthy Lifestyle, and Coronary Disease. N. Engl. J. Med. 2016; 375(24):2349-58. Doi:10.1056/NEJMoa1605086.
Rietveld CA, Medland SE, Derringer J, et ál. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 2013;340:1467-71. Doi:10.1126/ science.1235488.
Li X, Dunn J, Salins D, et ál. Digital Health: Tracking Physiomes and Activity Using Wearable Biosensors Reveals Useful Health- Related Information. PLOS Biol. 2017; 12:1-30. Doi:10.1371/journal. pbio.2001402.
Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat. Rev. Genet. 2018; 19:299-310.
The articles published in this journal are subject to the following terms and conditions:
- The journal retains copyright of the articles published, and encourages and permits their reuse under the licence indicated at point 2.
- The articles are published in the online edition of the journal under licence Creative Commons Attribution-Non Commercial 4.0 (CC BY-NC 4.0). They can be copied, used, disseminated, transmitted, and publicly displayed, providing that the authorship, URL address and the Journal are cited, and that no commercial use is made of them.
- The authors agree with terms of licence use of the journal, with the self-archiving conditions and with the open access policy.
- In the event of reuse of the articles published, the existence and specifications of the terms of licence use must be mentioned, in addition to citing the authorship and original source of the their publication.