As "Ómicas" como ferramenta no estudo da Saúde Ambiental
PDF (Español (España))

Palavras-chave

saúde ambiental
"ómicas"
genómica
proteómica
metabolómica

Como Citar

Muñoz Yañez, C., Rubio Andrade, M., Guangorena Gómez, J. O., Alegría Torres, J. A., & García Vargas, G. G. (2018). As "Ómicas" como ferramenta no estudo da Saúde Ambiental. Revista Espanhola De Saúde Ambiental, 18(2), 156–165. Obtido de https://ojs.diffundit.com/index.php/rsa/article/view/917

Resumo

As mortes causadas pela poluição ambiental sãoum problema de saúde pública crescente. A maioria das mortes prematuras causadas por contaminação sãodoençasnãotransmissíveis, como doença pulmonar obstrutiva crónica, diabetes tipo 2, doenças cardiovasculares e cancro. Estas são consideradas doenças complexas pela sua multicausalidade e pelos vários mecanismos envolvidos no seu aparecimento e evolução. O conhecimento do mecanismo de produção da doença e a identificação de biomarcadores associados à doençaestá a avançar graçasao desenvolvimento da tecnologia e, especificamente, à tecnologia aplicada à medição e interpretação de componentes moleculares: as tecnologias “ÓMICAS”. Estas permitiram identificar as causas celulares de algumasdoenças complexas: variantes genéticas de suscetibilidade ouproteção a agentes contaminantes (Genómica), bem como alterações no DNA (Epigenética) e os seusefeitos no processo de transcrição de genes específicos de reparação, metabolismo ou RNAnão-codificanteassociado a doenças (Transcriptómica);acresce a Proteómica e a Metabolómica que fornecem informação sobre as proteínas e metabólitosenvolvidos nos processos de doença. Paralelamente ao desenvolvimento das novas técnicas biotecnológicas, geralmente denominadas por “Ómicas”, evoluiu a bioinformática, o que permitiu a interpretação dos resultados das análises de centenas de moléculas para organizá-las em redes que traduzem as relações entre elas. As tecnologias “Ómicas” aplicam-se principalmente para determinar modelos de risco de doença com base em estudos populacionais, mas igualmente a informação do genoma, do transcriptoma, do epigenoma, do microbioma, do proteoma e do metaboloma será usada para ajudar a decifrar a doença, a fim de facilitar o prognóstico e orientar o tratamento dos pacientes, auxiliado a medicina individualizada e a medicina de precisão. No entanto, a sua aplicação clínica ainda é limitada pelo custo e implicações técnicas, regulamentares e éticas.
PDF (Español (España))

Referências

Landrigan PJ, Fuller R, Hu H, et ál. Pollution and Global Health 13. -An Agenda for Prevention. Environ. Health Perspect. 2018;

(8):084501-6.

Fuller R, Rahona E, Fisher S, et ál. Pollution and non-communicable disease: time to end the neglect. Lancet Planet. Health 2018; 2(3):e96-8.

Cong X. Air pollution from industrial waste gas emissions is associated with cancer incidences in Shanghai, China. Environ. Sci. Pollut. Res. 2018; 25:13067-78.

Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017; 18:1-15.

Wyszynski DF. La epidemiología genética: disciplina científica en expansión 1. Pan Am. J. Public Health 1998; 3, 26-34.

Hu Y,An Q, Sheu K, et ál. Single Cell Multi-Omics Technology: Methodology and Application. Front. Cell Dev. Biol. 2018; 6:28.

Rothschild D, Weissbrod O, Barkan E, et ál. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018; 555:210-5.

Esparragón F, Rodríguez Pérez JC, García Bello MA. Guía práctica a los estudios de asociación genética. Consideraciones sobre su utilidad clínica. Nefrologia 2009; 29:582-8.

Moreau Y, Tranchevent LC. Computational tools for prioritizing candidate genes: Boosting disease gene discovery. Nature Reviews Genetics2012. Doi:10.1038/nrg3253.

Flores-Alfaro E, Burguete-García AI, Salazar-Martínez E. Diseños de investigación en epidemiología genética. Rev. Panam. Salud Pública 2012; 31:88-94.

Farfán MJ, Torres JP. Diagnóstico en medicina en la era de las ‘omicas’. Rev. Chil. pediatría 2018;89:163-5.

Laine JE, Bailey KA, Oishan AF, et ál. Neonatal Metabolomic Profiles Related to Prenatal Arsenic Exposure. Environ. Sci. Technol. 2017; 51:625-33.

Rojas D,Rager JE, Smeester L, et ál. Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol. Sci.2015; 143:97-106.

Rager JE, Bailey KA, Smeester L, et ál. Prenatal arsenic exposure and the epigenome: Altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. Environ. Mol. Mutagen. 2014; 55:196-208.

Bailey KA, Laine J, Rager JE, et ál. Prenatal arsenic exposure and

Drobná Z, Martin E, Kim KS, et ál. Analysis of maternal polymorphisms in arsenic (+3 oxidation state)-methyltransferase AS3MT and fetal sex in relation to arsenic metabolism and infant birth outcomes: Implications for risk analysis. Reprod. Toxicol. 2016; 61:28-38.

Aldana M. Estructura y dinámica de redes genéticas. Gac. Biomédicas; 2007. [Citado 26/11/2018] Disponible en: https:// www.fis.unam.mx/~max/MyWebPage/aldana_gaceta- biomedicas_2007.pdf.

Zheng F, Wei L, Zhao L, Ni F. Pathway Network Analysis of Complex Diseases Based on Multiple Biological Networks. Biomed Res. Int. 2018; 18:1-12.

Mitra AK, Clarke K. Viral obesity: Fact or fiction? Obesity Reviews; 2010. Doi:10.1111/j.1467-789X.2009.00677.x.

Cowen L, Ideker T, Raphael BJ, Sharan R. Network propagation: A universal amplifier of genetic associations. Nature Reviews Genetics; 2017. Doi:10.1038/nrg.2017.38.

Ogura Y, Bonen DK, Inohara N, et ál. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001; 411:603-6. Doi:10.1038/35079114.

Huang H, Fang M, Jostins L, et ál. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature 2017; 547:173-8. Doi:10.1038/nature22969.

Liu JZ, Mcrae A, Nyholt DR, et ál. A versatile gene-based test for genome-wide association studies. Am. J. Hum. Genet. 2010; 87:139-45. Doi:10.1016/j.ajhg.2010.06.009.

Neale BM, Kou Y, Liu L, et ál. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 2012; 485: 242-5. Doi:10.1038/nature11011.

Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature 2009; 458:719-24. Doi:10.1038/nature07943.

Nakagawa H, Fujita M. Whole genome sequencing analysis for cancer genomics and precision medicine. Cancer Sci. 2018;

:513-22.

Stunnenberg HG, Hubner NC. Genomics meets proteomics:

Identifying the culprits in disease. Hum. Genet. 2014; 133: 689-700.

Moreno V, Gemignani F, Landi S, et ál. Polymorphisms in genes of nucleotide and base excision repair: Risk and prognosis of colorectal cancer. Clin. Cancer Res. 2006; 12:2101-8.

Zienolddiny S, Campa D, Lind H, et ál. Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis 2006; 27:560-7.

Pérez-Morales R, Mendez-Ramírez I, Castro Hernández C, et ál. Polymorphisms associated with the risk of lung cancer in a healthy Mexican Mestizo population: Application of the additive model for cancer. Genet. Mol. Biol. 2011; 34:546–52.

Ahluwalia M, Kaur A. Modulatory role of GSTT1 and GSTM1 in Punjabi agricultural workers exposed to pesticides. Environ. Sci. Pollut. Res. 2018; 25:11981-6.

Budnik LT, Adam B, Albin M, et ál. Diagnosis, monitoring and prevention of exposure-related non-communicable diseases in the living and working environment: DiMoPEx-project is designed to determine the impacts of environmental exposure on human health. J. Occup. Med. Toxicol. 2018; 13:1–22.

Gao Y, Zhang Y, Kamijima M,et ál. Quantitative assessments of indoor air pollution and the risk of childhood acute leukemia in Shanghai. Environ. Pollut. 2014;187:81-9.

Lien SA, Young L, Gau BS, Shiao SP. Meta-prediction of MTHFR gene polymorphism-mutations, air pollution, and risks of leukemia among world populations. Oncotarget 2017; 8:4387-98.

Jiménez-Morales S, Hidalgo-Miranda A, Ramírez-Bello J. Leucemia linfoblástica aguda infantil: una aproximación genómica. Bol. Med. Hosp. Infant. Mex. 2017; 74:13-26.

Lalonde E, Wertheim G, Li MM. Clinical Impact of Genomic Information in Pediatric Leukemia. Front. Pediatr. 2017; 5:1-8.

Kassogue Y, Dehbi H, Quachouch M, et ál. Association of glutathione S-transferase (GSTM1 and GSTT1) genes with chronic myeloid leukemia. Springer Plus 2015; 4 (210):1-5.

Pongstaporn W, Pakakasama S, Chaksangchaichote P, et ál. MDR1 C3435T and C1236T polymorphisms: Association with high-risk childhood acute lymphoblastic leukemia. Asian Pacific J. Cancer Prev. 2015; 16:2839-43.

Megías-Vericat JE, Rojas L, Herrero MJ, et ál. Influence of ABCB1 polymorphisms upon the effectiveness of standard treatment for acute myeloid leukemia: A systematic review and meta-analysis of observational studies. Pharmacogenomics J. 2015; 15:109-18.

Huang B, Jiang C, Zhang R. Epigenetics: The language of the cell? Epigenomics 2014; 6:73-88.

Feinberg AP. The Key Role of Epigenetics in Human Disease Prevention and Mitigation. N. Engl. J. Med. 2018; 378:1323-34.

Li J, Zhang X, He Z, et ál. MGMT hypomethylation is associated with DNA damage in workers exposed to low-dose benzene. Biomarkers 2017; 22:470-5.

Jiménez-Garza O, Guo L, Byun HM, et ál. Promoter methylation status in genes related with inflammation, nitrosative stress and xenobiotic metabolism in low-level benzene exposure: Searching for biomarkers of oncogenesis. Food Chem. Toxicol. 2017; 109:669-76.

Jelinek J, Gharibyan V, Estecio MR, et ál. Aberrant DNA methylation

is associated with disease progression, resistance to imatinib and shortened survival in chronic myelogenous leukemia. PLoS One 2011; 6:1-9.

Jiménez-Garza O,Guo L, Byun HM, et ál. Aberrant promoter methylation in genes related to hematopoietic malignancy in workers exposed to a VOC mixture. Toxicol. Appl. Pharmacol. 2018; 339:65–72.

Tebani A, Afonso C, Marret S, Bekri S. Omics-based strategies in precision medicine: Toward a paradigm shift in inborn errors of metabolism investigations. Int. J. Mol. Sci. 2016; 17. Doi:10.3390/ ijms17091555.

McHale CM, Zhang L, lan Q, et ál. Changes in the peripheral blood transcriptome associated with occupational benzene exposure identified by cross-comparison on two microarray platforms. Genomics 2009; 93:343-49. Doi:10.1016/j.ygeno.2008.12.006.

Thomas R, Hubbard AE, McHale CM, et ál. Characterization of changes in gene expression and biochemical pathways at low levels of benzene exposure. PLoS One 2014; 9(5):e91828.

Bai W, Yang J, Yang G, et ál. Long non-coding RNA NR_045623 and NR_028291 involved in benzene hematotoxicity in occupationally benzene-exposed workers. Exp. Mol. Pathol. 2014; 96:354-60.

Kanagal-Shamanna R, Zhao W, Vadhan-Raj S, et ál. Over-expression of CYP2E1 mRNA and protein: implications of xenobiotic induced damage in patients with de novo acute myeloid leukemia with inv(16)(p13.1q22); CBFβ-MYH11. Int. J. Environ. Res. Public Health 2012; 9(8):2788-800. Doi:10.3390/ijerph9082788.

Beane J, Vick J, Schembri F, et ál. Characterizing the Impact of Smoking and Lung Cancer on the Airway Transcriptome Using RNA-Seq. Cancer Prev. Res. 2011;4(6):803-17.

Erkizan HV, Johnson K, Ghimbovschi S, et ál. African-American esophageal squamous cell carcinoma expression profile reveals dysregulation of stress response and detox networks. BMC Cancer 2017; 17:1-13.

Lu M, Zhan X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J. 2018; 9:77-102.

Jimenez-Luna C, Torres C, Ortiz R, et ál. Proteomic biomarkers in body fluids associated with pancreatic cancer. Oncotarget2018; 9(23):16573-87. Doi:10.18632/oncotarget. 24654.

Rai V, Mukherjee R, Ghosh AK, Routray A, Chakraborty C. “Omics” in oral cancer: New approaches for biomarker discovery. Arch. Oral Biol. 2018; 87:15-34.

Skalnikova HK, Cizkova J, Cervenka J, Vodicka P. Advances in Proteomic Techniques for Cytokine Analysis: Focus on Melanoma Research. International journal of molecular sciences 2017. Doi:10.3390/ijms18122697.

Wu C, Li W. Genomics and pharmacogenomics of pediatric acute lymphoblastic leukemia. Crit. Rev. Oncol. Hematol. 2018; 126:100-

Chung YL, Wu ML. The Role of Promyelocytic Leukemia Protein in Steatosis-Associated Hepatic Tumors Related to Chronic Hepatitis B virus Infection. Transl. Oncol. 2018; 11: 743-54.

Maier RM, Visscher PM, Robinson MR, Wray NR. Embracing polygenicity: A review of methods and tools for psychiatric genetics research. Psychological Medicine. 2018; 48(7):1055-67. Doi:10.1017/S0033291717002318.

Khera AV, Emdin CA, Drake I, et ál. Genetic Risk, Adherence to a Healthy Lifestyle, and Coronary Disease. N. Engl. J. Med. 2016; 375(24):2349-58. Doi:10.1056/NEJMoa1605086.

Rietveld CA, Medland SE, Derringer J, et ál. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 2013;340:1467-71. Doi:10.1126/ science.1235488.

Li X, Dunn J, Salins D, et ál. Digital Health: Tracking Physiomes and Activity Using Wearable Biosensors Reveals Useful Health- Related Information. PLOS Biol. 2017; 12:1-30. Doi:10.1371/journal. pbio.2001402.

Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat. Rev. Genet. 2018; 19:299-310.

As obras publicadas na revista estão sujeitas aos seguintes termos:

  1. A revista detém os direitos patrimoniais (copyright) das obras publicadas e favorece e permite a reutilização das mesmas sujeita à licença indicada no ponto 2.
  2. As obras são publicadas na revista eletrónica sob uma licença  Creative Commons Atribuição - NãoComercial 4.0 (CC BY-NC 4.0). As mesmas podem-se copiar, usar, difundir, transmitir e expor publicamente, para fins não comerciais, desde que se cite a autoria, o url e a revista.
  3. Os autores estão de acordo com a licença de uso utilizada pela revista, com as condições de auto-arquivo e com a política de livre acesso.

Em caso de reutilização das obras publicadas deve mencionar-se a existência e especificações da licença de uso para além de mencionar a autoria e fonte original de publicação.

Downloads

Não há dados estatísticos.